• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2013 Francisco Jerez
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a
5 // copy of this software and associated documentation files (the "Software"),
6 // to deal in the Software without restriction, including without limitation
7 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 // and/or sell copies of the Software, and to permit persons to whom the
9 // Software is furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 // OTHER DEALINGS IN THE SOFTWARE.
21 //
22 
23 #ifndef CLOVER_UTIL_FACTOR_HPP
24 #define CLOVER_UTIL_FACTOR_HPP
25 
26 #include "util/range.hpp"
27 
28 namespace clover {
29    namespace factor {
30       ///
31       /// Calculate all prime integer factors of \p x.
32       ///
33       /// If \p limit is non-zero, terminate early as soon as enough
34       /// factors have been collected to reach the product \p limit.
35       ///
36       template<typename T>
37       std::vector<T>
find_integer_prime_factors(T x,T limit=0)38       find_integer_prime_factors(T x, T limit = 0)
39       {
40          const T max_d = (limit > 0 && limit < x ? limit : x);
41          const T min_x = x / max_d;
42          std::vector<T> factors;
43 
44          for (T d = 2; d <= max_d && x > min_x; d++) {
45             if (x % d == 0) {
46                for (; x % d == 0; x /= d);
47                factors.push_back(d);
48             }
49          }
50 
51          return factors;
52       }
53 
54       namespace detail {
55          ///
56          /// Walk the power set of prime factors of the n-dimensional
57          /// integer array \p grid subject to the constraints given by
58          /// \p limits.
59          ///
60          template<typename T>
61          std::pair<T, std::vector<T>>
next_grid_factor(const std::pair<T,std::vector<T>> & limits,const std::vector<T> & grid,const std::vector<std::vector<T>> & factors,std::pair<T,std::vector<T>> block,unsigned d=0,unsigned i=0)62          next_grid_factor(const std::pair<T, std::vector<T>> &limits,
63                           const std::vector<T> &grid,
64                           const std::vector<std::vector<T>> &factors,
65                           std::pair<T, std::vector<T>> block,
66                           unsigned d = 0, unsigned i = 0) {
67             if (d >= factors.size()) {
68                // We're done.
69                return {};
70 
71             } else if (i >= factors[d].size()) {
72                // We're done with this grid dimension, try the next.
73                return next_grid_factor(limits, grid, factors,
74                                        std::move(block), d + 1, 0);
75 
76             } else {
77                T f = factors[d][i];
78 
79                // Try the next power of this factor.
80                block.first *= f;
81                block.second[d] *= f;
82 
83                if (block.first <= limits.first &&
84                    block.second[d] <= limits.second[d] &&
85                    grid[d] % block.second[d] == 0) {
86                   // We've found a valid grid divisor.
87                   return block;
88 
89                } else {
90                   // Overflow, back off to the zeroth power,
91                   while (block.second[d] % f == 0) {
92                      block.second[d] /= f;
93                      block.first /= f;
94                   }
95 
96                   // ...and carry to the next factor.
97                   return next_grid_factor(limits, grid, factors,
98                                           std::move(block), d, i + 1);
99                }
100             }
101          }
102       }
103 
104       ///
105       /// Find the divisor of the integer array \p grid that gives the
106       /// highest possible product not greater than \p product_limit
107       /// subject to the constraints given by \p coord_limit.
108       ///
109       template<typename T>
110       std::vector<T>
find_grid_optimal_factor(T product_limit,const std::vector<T> & coord_limit,const std::vector<T> & grid)111       find_grid_optimal_factor(T product_limit,
112                                const std::vector<T> &coord_limit,
113                                const std::vector<T> &grid) {
114          const std::vector<std::vector<T>> factors =
115             map(find_integer_prime_factors<T>, grid, coord_limit);
116          const auto limits = std::make_pair(product_limit, coord_limit);
117          auto best = std::make_pair(T(1), std::vector<T>(grid.size(), T(1)));
118 
119          for (auto block = best;
120               block.first != 0 && best.first != product_limit;
121               block = detail::next_grid_factor(limits, grid, factors, block)) {
122             if (block.first > best.first)
123                best = block;
124          }
125 
126          return best.second;
127       }
128    }
129 }
130 
131 #endif
132