• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/common_audio/vad/vad_filterbank.h"
12 
13 #include <assert.h>
14 
15 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
16 #include "webrtc/typedefs.h"
17 
18 // Constants used in LogOfEnergy().
19 static const int16_t kLogConst = 24660;  // 160*log10(2) in Q9.
20 static const int16_t kLogEnergyIntPart = 14336;  // 14 in Q10
21 
22 // Coefficients used by HighPassFilter, Q14.
23 static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 };
24 static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 };
25 
26 // Allpass filter coefficients, upper and lower, in Q15.
27 // Upper: 0.64, Lower: 0.17
28 static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 };
29 
30 // Adjustment for division with two in SplitFilter.
31 static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
32 
33 // High pass filtering, with a cut-off frequency at 80 Hz, if the |data_in| is
34 // sampled at 500 Hz.
35 //
36 // - data_in      [i]   : Input audio data sampled at 500 Hz.
37 // - data_length  [i]   : Length of input and output data.
38 // - filter_state [i/o] : State of the filter.
39 // - data_out     [o]   : Output audio data in the frequency interval
40 //                        80 - 250 Hz.
HighPassFilter(const int16_t * data_in,size_t data_length,int16_t * filter_state,int16_t * data_out)41 static void HighPassFilter(const int16_t* data_in, size_t data_length,
42                            int16_t* filter_state, int16_t* data_out) {
43   size_t i;
44   const int16_t* in_ptr = data_in;
45   int16_t* out_ptr = data_out;
46   int32_t tmp32 = 0;
47 
48 
49   // The sum of the absolute values of the impulse response:
50   // The zero/pole-filter has a max amplification of a single sample of: 1.4546
51   // Impulse response: 0.4047 -0.6179 -0.0266  0.1993  0.1035  -0.0194
52   // The all-zero section has a max amplification of a single sample of: 1.6189
53   // Impulse response: 0.4047 -0.8094  0.4047  0       0        0
54   // The all-pole section has a max amplification of a single sample of: 1.9931
55   // Impulse response: 1.0000  0.4734 -0.1189 -0.2187 -0.0627   0.04532
56 
57   for (i = 0; i < data_length; i++) {
58     // All-zero section (filter coefficients in Q14).
59     tmp32 = kHpZeroCoefs[0] * *in_ptr;
60     tmp32 += kHpZeroCoefs[1] * filter_state[0];
61     tmp32 += kHpZeroCoefs[2] * filter_state[1];
62     filter_state[1] = filter_state[0];
63     filter_state[0] = *in_ptr++;
64 
65     // All-pole section (filter coefficients in Q14).
66     tmp32 -= kHpPoleCoefs[1] * filter_state[2];
67     tmp32 -= kHpPoleCoefs[2] * filter_state[3];
68     filter_state[3] = filter_state[2];
69     filter_state[2] = (int16_t) (tmp32 >> 14);
70     *out_ptr++ = filter_state[2];
71   }
72 }
73 
74 // All pass filtering of |data_in|, used before splitting the signal into two
75 // frequency bands (low pass vs high pass).
76 // Note that |data_in| and |data_out| can NOT correspond to the same address.
77 //
78 // - data_in            [i]   : Input audio signal given in Q0.
79 // - data_length        [i]   : Length of input and output data.
80 // - filter_coefficient [i]   : Given in Q15.
81 // - filter_state       [i/o] : State of the filter given in Q(-1).
82 // - data_out           [o]   : Output audio signal given in Q(-1).
AllPassFilter(const int16_t * data_in,size_t data_length,int16_t filter_coefficient,int16_t * filter_state,int16_t * data_out)83 static void AllPassFilter(const int16_t* data_in, size_t data_length,
84                           int16_t filter_coefficient, int16_t* filter_state,
85                           int16_t* data_out) {
86   // The filter can only cause overflow (in the w16 output variable)
87   // if more than 4 consecutive input numbers are of maximum value and
88   // has the the same sign as the impulse responses first taps.
89   // First 6 taps of the impulse response:
90   // 0.6399 0.5905 -0.3779 0.2418 -0.1547 0.0990
91 
92   size_t i;
93   int16_t tmp16 = 0;
94   int32_t tmp32 = 0;
95   int32_t state32 = ((int32_t) (*filter_state) << 16);  // Q15
96 
97   for (i = 0; i < data_length; i++) {
98     tmp32 = state32 + filter_coefficient * *data_in;
99     tmp16 = (int16_t) (tmp32 >> 16);  // Q(-1)
100     *data_out++ = tmp16;
101     state32 = (*data_in << 14) - filter_coefficient * tmp16;  // Q14
102     state32 <<= 1;  // Q15.
103     data_in += 2;
104   }
105 
106   *filter_state = (int16_t) (state32 >> 16);  // Q(-1)
107 }
108 
109 // Splits |data_in| into |hp_data_out| and |lp_data_out| corresponding to
110 // an upper (high pass) part and a lower (low pass) part respectively.
111 //
112 // - data_in      [i]   : Input audio data to be split into two frequency bands.
113 // - data_length  [i]   : Length of |data_in|.
114 // - upper_state  [i/o] : State of the upper filter, given in Q(-1).
115 // - lower_state  [i/o] : State of the lower filter, given in Q(-1).
116 // - hp_data_out  [o]   : Output audio data of the upper half of the spectrum.
117 //                        The length is |data_length| / 2.
118 // - lp_data_out  [o]   : Output audio data of the lower half of the spectrum.
119 //                        The length is |data_length| / 2.
SplitFilter(const int16_t * data_in,size_t data_length,int16_t * upper_state,int16_t * lower_state,int16_t * hp_data_out,int16_t * lp_data_out)120 static void SplitFilter(const int16_t* data_in, size_t data_length,
121                         int16_t* upper_state, int16_t* lower_state,
122                         int16_t* hp_data_out, int16_t* lp_data_out) {
123   size_t i;
124   size_t half_length = data_length >> 1;  // Downsampling by 2.
125   int16_t tmp_out;
126 
127   // All-pass filtering upper branch.
128   AllPassFilter(&data_in[0], half_length, kAllPassCoefsQ15[0], upper_state,
129                 hp_data_out);
130 
131   // All-pass filtering lower branch.
132   AllPassFilter(&data_in[1], half_length, kAllPassCoefsQ15[1], lower_state,
133                 lp_data_out);
134 
135   // Make LP and HP signals.
136   for (i = 0; i < half_length; i++) {
137     tmp_out = *hp_data_out;
138     *hp_data_out++ -= *lp_data_out;
139     *lp_data_out++ += tmp_out;
140   }
141 }
142 
143 // Calculates the energy of |data_in| in dB, and also updates an overall
144 // |total_energy| if necessary.
145 //
146 // - data_in      [i]   : Input audio data for energy calculation.
147 // - data_length  [i]   : Length of input data.
148 // - offset       [i]   : Offset value added to |log_energy|.
149 // - total_energy [i/o] : An external energy updated with the energy of
150 //                        |data_in|.
151 //                        NOTE: |total_energy| is only updated if
152 //                        |total_energy| <= |kMinEnergy|.
153 // - log_energy   [o]   : 10 * log10("energy of |data_in|") given in Q4.
LogOfEnergy(const int16_t * data_in,size_t data_length,int16_t offset,int16_t * total_energy,int16_t * log_energy)154 static void LogOfEnergy(const int16_t* data_in, size_t data_length,
155                         int16_t offset, int16_t* total_energy,
156                         int16_t* log_energy) {
157   // |tot_rshifts| accumulates the number of right shifts performed on |energy|.
158   int tot_rshifts = 0;
159   // The |energy| will be normalized to 15 bits. We use unsigned integer because
160   // we eventually will mask out the fractional part.
161   uint32_t energy = 0;
162 
163   assert(data_in != NULL);
164   assert(data_length > 0);
165 
166   energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length,
167                                        &tot_rshifts);
168 
169   if (energy != 0) {
170     // By construction, normalizing to 15 bits is equivalent with 17 leading
171     // zeros of an unsigned 32 bit value.
172     int normalizing_rshifts = 17 - WebRtcSpl_NormU32(energy);
173     // In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
174     // (14 << 10), which is what we initialize |log2_energy| with. For a more
175     // detailed derivations, see below.
176     int16_t log2_energy = kLogEnergyIntPart;
177 
178     tot_rshifts += normalizing_rshifts;
179     // Normalize |energy| to 15 bits.
180     // |tot_rshifts| is now the total number of right shifts performed on
181     // |energy| after normalization. This means that |energy| is in
182     // Q(-tot_rshifts).
183     if (normalizing_rshifts < 0) {
184       energy <<= -normalizing_rshifts;
185     } else {
186       energy >>= normalizing_rshifts;
187     }
188 
189     // Calculate the energy of |data_in| in dB, in Q4.
190     //
191     // 10 * log10("true energy") in Q4 = 2^4 * 10 * log10("true energy") =
192     // 160 * log10(|energy| * 2^|tot_rshifts|) =
193     // 160 * log10(2) * log2(|energy| * 2^|tot_rshifts|) =
194     // 160 * log10(2) * (log2(|energy|) + log2(2^|tot_rshifts|)) =
195     // (160 * log10(2)) * (log2(|energy|) + |tot_rshifts|) =
196     // |kLogConst| * (|log2_energy| + |tot_rshifts|)
197     //
198     // We know by construction that |energy| is normalized to 15 bits. Hence,
199     // |energy| = 2^14 + frac_Q15, where frac_Q15 is a fractional part in Q15.
200     // Further, we'd like |log2_energy| in Q10
201     // log2(|energy|) in Q10 = 2^10 * log2(2^14 + frac_Q15) =
202     // 2^10 * log2(2^14 * (1 + frac_Q15 * 2^-14)) =
203     // 2^10 * (14 + log2(1 + frac_Q15 * 2^-14)) ~=
204     // (14 << 10) + 2^10 * (frac_Q15 * 2^-14) =
205     // (14 << 10) + (frac_Q15 * 2^-4) = (14 << 10) + (frac_Q15 >> 4)
206     //
207     // Note that frac_Q15 = (|energy| & 0x00003FFF)
208 
209     // Calculate and add the fractional part to |log2_energy|.
210     log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4);
211 
212     // |kLogConst| is in Q9, |log2_energy| in Q10 and |tot_rshifts| in Q0.
213     // Note that we in our derivation above have accounted for an output in Q4.
214     *log_energy = (int16_t)(((kLogConst * log2_energy) >> 19) +
215         ((tot_rshifts * kLogConst) >> 9));
216 
217     if (*log_energy < 0) {
218       *log_energy = 0;
219     }
220   } else {
221     *log_energy = offset;
222     return;
223   }
224 
225   *log_energy += offset;
226 
227   // Update the approximate |total_energy| with the energy of |data_in|, if
228   // |total_energy| has not exceeded |kMinEnergy|. |total_energy| is used as an
229   // energy indicator in WebRtcVad_GmmProbability() in vad_core.c.
230   if (*total_energy <= kMinEnergy) {
231     if (tot_rshifts >= 0) {
232       // We know by construction that the |energy| > |kMinEnergy| in Q0, so add
233       // an arbitrary value such that |total_energy| exceeds |kMinEnergy|.
234       *total_energy += kMinEnergy + 1;
235     } else {
236       // By construction |energy| is represented by 15 bits, hence any number of
237       // right shifted |energy| will fit in an int16_t. In addition, adding the
238       // value to |total_energy| is wrap around safe as long as
239       // |kMinEnergy| < 8192.
240       *total_energy += (int16_t) (energy >> -tot_rshifts);  // Q0.
241     }
242   }
243 }
244 
WebRtcVad_CalculateFeatures(VadInstT * self,const int16_t * data_in,size_t data_length,int16_t * features)245 int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
246                                     size_t data_length, int16_t* features) {
247   int16_t total_energy = 0;
248   // We expect |data_length| to be 80, 160 or 240 samples, which corresponds to
249   // 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will
250   // have at most 120 samples after the first split and at most 60 samples after
251   // the second split.
252   int16_t hp_120[120], lp_120[120];
253   int16_t hp_60[60], lp_60[60];
254   const size_t half_data_length = data_length >> 1;
255   size_t length = half_data_length;  // |data_length| / 2, corresponds to
256                                      // bandwidth = 2000 Hz after downsampling.
257 
258   // Initialize variables for the first SplitFilter().
259   int frequency_band = 0;
260   const int16_t* in_ptr = data_in;  // [0 - 4000] Hz.
261   int16_t* hp_out_ptr = hp_120;  // [2000 - 4000] Hz.
262   int16_t* lp_out_ptr = lp_120;  // [0 - 2000] Hz.
263 
264   assert(data_length <= 240);
265   assert(4 < kNumChannels - 1);  // Checking maximum |frequency_band|.
266 
267   // Split at 2000 Hz and downsample.
268   SplitFilter(in_ptr, data_length, &self->upper_state[frequency_band],
269               &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
270 
271   // For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample.
272   frequency_band = 1;
273   in_ptr = hp_120;  // [2000 - 4000] Hz.
274   hp_out_ptr = hp_60;  // [3000 - 4000] Hz.
275   lp_out_ptr = lp_60;  // [2000 - 3000] Hz.
276   SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
277               &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
278 
279   // Energy in 3000 Hz - 4000 Hz.
280   length >>= 1;  // |data_length| / 4 <=> bandwidth = 1000 Hz.
281 
282   LogOfEnergy(hp_60, length, kOffsetVector[5], &total_energy, &features[5]);
283 
284   // Energy in 2000 Hz - 3000 Hz.
285   LogOfEnergy(lp_60, length, kOffsetVector[4], &total_energy, &features[4]);
286 
287   // For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample.
288   frequency_band = 2;
289   in_ptr = lp_120;  // [0 - 2000] Hz.
290   hp_out_ptr = hp_60;  // [1000 - 2000] Hz.
291   lp_out_ptr = lp_60;  // [0 - 1000] Hz.
292   length = half_data_length;  // |data_length| / 2 <=> bandwidth = 2000 Hz.
293   SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
294               &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
295 
296   // Energy in 1000 Hz - 2000 Hz.
297   length >>= 1;  // |data_length| / 4 <=> bandwidth = 1000 Hz.
298   LogOfEnergy(hp_60, length, kOffsetVector[3], &total_energy, &features[3]);
299 
300   // For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample.
301   frequency_band = 3;
302   in_ptr = lp_60;  // [0 - 1000] Hz.
303   hp_out_ptr = hp_120;  // [500 - 1000] Hz.
304   lp_out_ptr = lp_120;  // [0 - 500] Hz.
305   SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
306               &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
307 
308   // Energy in 500 Hz - 1000 Hz.
309   length >>= 1;  // |data_length| / 8 <=> bandwidth = 500 Hz.
310   LogOfEnergy(hp_120, length, kOffsetVector[2], &total_energy, &features[2]);
311 
312   // For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample.
313   frequency_band = 4;
314   in_ptr = lp_120;  // [0 - 500] Hz.
315   hp_out_ptr = hp_60;  // [250 - 500] Hz.
316   lp_out_ptr = lp_60;  // [0 - 250] Hz.
317   SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
318               &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
319 
320   // Energy in 250 Hz - 500 Hz.
321   length >>= 1;  // |data_length| / 16 <=> bandwidth = 250 Hz.
322   LogOfEnergy(hp_60, length, kOffsetVector[1], &total_energy, &features[1]);
323 
324   // Remove 0 Hz - 80 Hz, by high pass filtering the lower band.
325   HighPassFilter(lp_60, length, self->hp_filter_state, hp_120);
326 
327   // Energy in 80 Hz - 250 Hz.
328   LogOfEnergy(hp_120, length, kOffsetVector[0], &total_energy, &features[0]);
329 
330   return total_energy;
331 }
332