1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/common_audio/vad/vad_filterbank.h"
12
13 #include <assert.h>
14
15 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
16 #include "webrtc/typedefs.h"
17
18 // Constants used in LogOfEnergy().
19 static const int16_t kLogConst = 24660; // 160*log10(2) in Q9.
20 static const int16_t kLogEnergyIntPart = 14336; // 14 in Q10
21
22 // Coefficients used by HighPassFilter, Q14.
23 static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 };
24 static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 };
25
26 // Allpass filter coefficients, upper and lower, in Q15.
27 // Upper: 0.64, Lower: 0.17
28 static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 };
29
30 // Adjustment for division with two in SplitFilter.
31 static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
32
33 // High pass filtering, with a cut-off frequency at 80 Hz, if the |data_in| is
34 // sampled at 500 Hz.
35 //
36 // - data_in [i] : Input audio data sampled at 500 Hz.
37 // - data_length [i] : Length of input and output data.
38 // - filter_state [i/o] : State of the filter.
39 // - data_out [o] : Output audio data in the frequency interval
40 // 80 - 250 Hz.
HighPassFilter(const int16_t * data_in,size_t data_length,int16_t * filter_state,int16_t * data_out)41 static void HighPassFilter(const int16_t* data_in, size_t data_length,
42 int16_t* filter_state, int16_t* data_out) {
43 size_t i;
44 const int16_t* in_ptr = data_in;
45 int16_t* out_ptr = data_out;
46 int32_t tmp32 = 0;
47
48
49 // The sum of the absolute values of the impulse response:
50 // The zero/pole-filter has a max amplification of a single sample of: 1.4546
51 // Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194
52 // The all-zero section has a max amplification of a single sample of: 1.6189
53 // Impulse response: 0.4047 -0.8094 0.4047 0 0 0
54 // The all-pole section has a max amplification of a single sample of: 1.9931
55 // Impulse response: 1.0000 0.4734 -0.1189 -0.2187 -0.0627 0.04532
56
57 for (i = 0; i < data_length; i++) {
58 // All-zero section (filter coefficients in Q14).
59 tmp32 = kHpZeroCoefs[0] * *in_ptr;
60 tmp32 += kHpZeroCoefs[1] * filter_state[0];
61 tmp32 += kHpZeroCoefs[2] * filter_state[1];
62 filter_state[1] = filter_state[0];
63 filter_state[0] = *in_ptr++;
64
65 // All-pole section (filter coefficients in Q14).
66 tmp32 -= kHpPoleCoefs[1] * filter_state[2];
67 tmp32 -= kHpPoleCoefs[2] * filter_state[3];
68 filter_state[3] = filter_state[2];
69 filter_state[2] = (int16_t) (tmp32 >> 14);
70 *out_ptr++ = filter_state[2];
71 }
72 }
73
74 // All pass filtering of |data_in|, used before splitting the signal into two
75 // frequency bands (low pass vs high pass).
76 // Note that |data_in| and |data_out| can NOT correspond to the same address.
77 //
78 // - data_in [i] : Input audio signal given in Q0.
79 // - data_length [i] : Length of input and output data.
80 // - filter_coefficient [i] : Given in Q15.
81 // - filter_state [i/o] : State of the filter given in Q(-1).
82 // - data_out [o] : Output audio signal given in Q(-1).
AllPassFilter(const int16_t * data_in,size_t data_length,int16_t filter_coefficient,int16_t * filter_state,int16_t * data_out)83 static void AllPassFilter(const int16_t* data_in, size_t data_length,
84 int16_t filter_coefficient, int16_t* filter_state,
85 int16_t* data_out) {
86 // The filter can only cause overflow (in the w16 output variable)
87 // if more than 4 consecutive input numbers are of maximum value and
88 // has the the same sign as the impulse responses first taps.
89 // First 6 taps of the impulse response:
90 // 0.6399 0.5905 -0.3779 0.2418 -0.1547 0.0990
91
92 size_t i;
93 int16_t tmp16 = 0;
94 int32_t tmp32 = 0;
95 int32_t state32 = ((int32_t) (*filter_state) << 16); // Q15
96
97 for (i = 0; i < data_length; i++) {
98 tmp32 = state32 + filter_coefficient * *data_in;
99 tmp16 = (int16_t) (tmp32 >> 16); // Q(-1)
100 *data_out++ = tmp16;
101 state32 = (*data_in << 14) - filter_coefficient * tmp16; // Q14
102 state32 <<= 1; // Q15.
103 data_in += 2;
104 }
105
106 *filter_state = (int16_t) (state32 >> 16); // Q(-1)
107 }
108
109 // Splits |data_in| into |hp_data_out| and |lp_data_out| corresponding to
110 // an upper (high pass) part and a lower (low pass) part respectively.
111 //
112 // - data_in [i] : Input audio data to be split into two frequency bands.
113 // - data_length [i] : Length of |data_in|.
114 // - upper_state [i/o] : State of the upper filter, given in Q(-1).
115 // - lower_state [i/o] : State of the lower filter, given in Q(-1).
116 // - hp_data_out [o] : Output audio data of the upper half of the spectrum.
117 // The length is |data_length| / 2.
118 // - lp_data_out [o] : Output audio data of the lower half of the spectrum.
119 // The length is |data_length| / 2.
SplitFilter(const int16_t * data_in,size_t data_length,int16_t * upper_state,int16_t * lower_state,int16_t * hp_data_out,int16_t * lp_data_out)120 static void SplitFilter(const int16_t* data_in, size_t data_length,
121 int16_t* upper_state, int16_t* lower_state,
122 int16_t* hp_data_out, int16_t* lp_data_out) {
123 size_t i;
124 size_t half_length = data_length >> 1; // Downsampling by 2.
125 int16_t tmp_out;
126
127 // All-pass filtering upper branch.
128 AllPassFilter(&data_in[0], half_length, kAllPassCoefsQ15[0], upper_state,
129 hp_data_out);
130
131 // All-pass filtering lower branch.
132 AllPassFilter(&data_in[1], half_length, kAllPassCoefsQ15[1], lower_state,
133 lp_data_out);
134
135 // Make LP and HP signals.
136 for (i = 0; i < half_length; i++) {
137 tmp_out = *hp_data_out;
138 *hp_data_out++ -= *lp_data_out;
139 *lp_data_out++ += tmp_out;
140 }
141 }
142
143 // Calculates the energy of |data_in| in dB, and also updates an overall
144 // |total_energy| if necessary.
145 //
146 // - data_in [i] : Input audio data for energy calculation.
147 // - data_length [i] : Length of input data.
148 // - offset [i] : Offset value added to |log_energy|.
149 // - total_energy [i/o] : An external energy updated with the energy of
150 // |data_in|.
151 // NOTE: |total_energy| is only updated if
152 // |total_energy| <= |kMinEnergy|.
153 // - log_energy [o] : 10 * log10("energy of |data_in|") given in Q4.
LogOfEnergy(const int16_t * data_in,size_t data_length,int16_t offset,int16_t * total_energy,int16_t * log_energy)154 static void LogOfEnergy(const int16_t* data_in, size_t data_length,
155 int16_t offset, int16_t* total_energy,
156 int16_t* log_energy) {
157 // |tot_rshifts| accumulates the number of right shifts performed on |energy|.
158 int tot_rshifts = 0;
159 // The |energy| will be normalized to 15 bits. We use unsigned integer because
160 // we eventually will mask out the fractional part.
161 uint32_t energy = 0;
162
163 assert(data_in != NULL);
164 assert(data_length > 0);
165
166 energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length,
167 &tot_rshifts);
168
169 if (energy != 0) {
170 // By construction, normalizing to 15 bits is equivalent with 17 leading
171 // zeros of an unsigned 32 bit value.
172 int normalizing_rshifts = 17 - WebRtcSpl_NormU32(energy);
173 // In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
174 // (14 << 10), which is what we initialize |log2_energy| with. For a more
175 // detailed derivations, see below.
176 int16_t log2_energy = kLogEnergyIntPart;
177
178 tot_rshifts += normalizing_rshifts;
179 // Normalize |energy| to 15 bits.
180 // |tot_rshifts| is now the total number of right shifts performed on
181 // |energy| after normalization. This means that |energy| is in
182 // Q(-tot_rshifts).
183 if (normalizing_rshifts < 0) {
184 energy <<= -normalizing_rshifts;
185 } else {
186 energy >>= normalizing_rshifts;
187 }
188
189 // Calculate the energy of |data_in| in dB, in Q4.
190 //
191 // 10 * log10("true energy") in Q4 = 2^4 * 10 * log10("true energy") =
192 // 160 * log10(|energy| * 2^|tot_rshifts|) =
193 // 160 * log10(2) * log2(|energy| * 2^|tot_rshifts|) =
194 // 160 * log10(2) * (log2(|energy|) + log2(2^|tot_rshifts|)) =
195 // (160 * log10(2)) * (log2(|energy|) + |tot_rshifts|) =
196 // |kLogConst| * (|log2_energy| + |tot_rshifts|)
197 //
198 // We know by construction that |energy| is normalized to 15 bits. Hence,
199 // |energy| = 2^14 + frac_Q15, where frac_Q15 is a fractional part in Q15.
200 // Further, we'd like |log2_energy| in Q10
201 // log2(|energy|) in Q10 = 2^10 * log2(2^14 + frac_Q15) =
202 // 2^10 * log2(2^14 * (1 + frac_Q15 * 2^-14)) =
203 // 2^10 * (14 + log2(1 + frac_Q15 * 2^-14)) ~=
204 // (14 << 10) + 2^10 * (frac_Q15 * 2^-14) =
205 // (14 << 10) + (frac_Q15 * 2^-4) = (14 << 10) + (frac_Q15 >> 4)
206 //
207 // Note that frac_Q15 = (|energy| & 0x00003FFF)
208
209 // Calculate and add the fractional part to |log2_energy|.
210 log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4);
211
212 // |kLogConst| is in Q9, |log2_energy| in Q10 and |tot_rshifts| in Q0.
213 // Note that we in our derivation above have accounted for an output in Q4.
214 *log_energy = (int16_t)(((kLogConst * log2_energy) >> 19) +
215 ((tot_rshifts * kLogConst) >> 9));
216
217 if (*log_energy < 0) {
218 *log_energy = 0;
219 }
220 } else {
221 *log_energy = offset;
222 return;
223 }
224
225 *log_energy += offset;
226
227 // Update the approximate |total_energy| with the energy of |data_in|, if
228 // |total_energy| has not exceeded |kMinEnergy|. |total_energy| is used as an
229 // energy indicator in WebRtcVad_GmmProbability() in vad_core.c.
230 if (*total_energy <= kMinEnergy) {
231 if (tot_rshifts >= 0) {
232 // We know by construction that the |energy| > |kMinEnergy| in Q0, so add
233 // an arbitrary value such that |total_energy| exceeds |kMinEnergy|.
234 *total_energy += kMinEnergy + 1;
235 } else {
236 // By construction |energy| is represented by 15 bits, hence any number of
237 // right shifted |energy| will fit in an int16_t. In addition, adding the
238 // value to |total_energy| is wrap around safe as long as
239 // |kMinEnergy| < 8192.
240 *total_energy += (int16_t) (energy >> -tot_rshifts); // Q0.
241 }
242 }
243 }
244
WebRtcVad_CalculateFeatures(VadInstT * self,const int16_t * data_in,size_t data_length,int16_t * features)245 int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
246 size_t data_length, int16_t* features) {
247 int16_t total_energy = 0;
248 // We expect |data_length| to be 80, 160 or 240 samples, which corresponds to
249 // 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will
250 // have at most 120 samples after the first split and at most 60 samples after
251 // the second split.
252 int16_t hp_120[120], lp_120[120];
253 int16_t hp_60[60], lp_60[60];
254 const size_t half_data_length = data_length >> 1;
255 size_t length = half_data_length; // |data_length| / 2, corresponds to
256 // bandwidth = 2000 Hz after downsampling.
257
258 // Initialize variables for the first SplitFilter().
259 int frequency_band = 0;
260 const int16_t* in_ptr = data_in; // [0 - 4000] Hz.
261 int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz.
262 int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz.
263
264 assert(data_length <= 240);
265 assert(4 < kNumChannels - 1); // Checking maximum |frequency_band|.
266
267 // Split at 2000 Hz and downsample.
268 SplitFilter(in_ptr, data_length, &self->upper_state[frequency_band],
269 &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
270
271 // For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample.
272 frequency_band = 1;
273 in_ptr = hp_120; // [2000 - 4000] Hz.
274 hp_out_ptr = hp_60; // [3000 - 4000] Hz.
275 lp_out_ptr = lp_60; // [2000 - 3000] Hz.
276 SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
277 &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
278
279 // Energy in 3000 Hz - 4000 Hz.
280 length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz.
281
282 LogOfEnergy(hp_60, length, kOffsetVector[5], &total_energy, &features[5]);
283
284 // Energy in 2000 Hz - 3000 Hz.
285 LogOfEnergy(lp_60, length, kOffsetVector[4], &total_energy, &features[4]);
286
287 // For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample.
288 frequency_band = 2;
289 in_ptr = lp_120; // [0 - 2000] Hz.
290 hp_out_ptr = hp_60; // [1000 - 2000] Hz.
291 lp_out_ptr = lp_60; // [0 - 1000] Hz.
292 length = half_data_length; // |data_length| / 2 <=> bandwidth = 2000 Hz.
293 SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
294 &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
295
296 // Energy in 1000 Hz - 2000 Hz.
297 length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz.
298 LogOfEnergy(hp_60, length, kOffsetVector[3], &total_energy, &features[3]);
299
300 // For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample.
301 frequency_band = 3;
302 in_ptr = lp_60; // [0 - 1000] Hz.
303 hp_out_ptr = hp_120; // [500 - 1000] Hz.
304 lp_out_ptr = lp_120; // [0 - 500] Hz.
305 SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
306 &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
307
308 // Energy in 500 Hz - 1000 Hz.
309 length >>= 1; // |data_length| / 8 <=> bandwidth = 500 Hz.
310 LogOfEnergy(hp_120, length, kOffsetVector[2], &total_energy, &features[2]);
311
312 // For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample.
313 frequency_band = 4;
314 in_ptr = lp_120; // [0 - 500] Hz.
315 hp_out_ptr = hp_60; // [250 - 500] Hz.
316 lp_out_ptr = lp_60; // [0 - 250] Hz.
317 SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
318 &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
319
320 // Energy in 250 Hz - 500 Hz.
321 length >>= 1; // |data_length| / 16 <=> bandwidth = 250 Hz.
322 LogOfEnergy(hp_60, length, kOffsetVector[1], &total_energy, &features[1]);
323
324 // Remove 0 Hz - 80 Hz, by high pass filtering the lower band.
325 HighPassFilter(lp_60, length, self->hp_filter_state, hp_120);
326
327 // Energy in 80 Hz - 250 Hz.
328 LogOfEnergy(hp_120, length, kOffsetVector[0], &total_energy, &features[0]);
329
330 return total_energy;
331 }
332