1 /* 2 * Copyright 2012 The WebRTC Project Authors. All rights reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 // Borrowed from Chromium's src/base/memory/scoped_ptr.h. 12 13 // Scopers help you manage ownership of a pointer, helping you easily manage a 14 // pointer within a scope, and automatically destroying the pointer at the end 15 // of a scope. There are two main classes you will use, which correspond to the 16 // operators new/delete and new[]/delete[]. 17 // 18 // Example usage (scoped_ptr<T>): 19 // { 20 // scoped_ptr<Foo> foo(new Foo("wee")); 21 // } // foo goes out of scope, releasing the pointer with it. 22 // 23 // { 24 // scoped_ptr<Foo> foo; // No pointer managed. 25 // foo.reset(new Foo("wee")); // Now a pointer is managed. 26 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. 27 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. 28 // foo->Method(); // Foo::Method() called. 29 // foo.get()->Method(); // Foo::Method() called. 30 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer 31 // // manages a pointer. 32 // foo.reset(new Foo("wee4")); // foo manages a pointer again. 33 // foo.reset(); // Foo("wee4") destroyed, foo no longer 34 // // manages a pointer. 35 // } // foo wasn't managing a pointer, so nothing was destroyed. 36 // 37 // Example usage (scoped_ptr<T[]>): 38 // { 39 // scoped_ptr<Foo[]> foo(new Foo[100]); 40 // foo.get()->Method(); // Foo::Method on the 0th element. 41 // foo[10].Method(); // Foo::Method on the 10th element. 42 // } 43 // 44 // These scopers also implement part of the functionality of C++11 unique_ptr 45 // in that they are "movable but not copyable." You can use the scopers in the 46 // parameter and return types of functions to signify ownership transfer in to 47 // and out of a function. When calling a function that has a scoper as the 48 // argument type, it must be called with the result of calling std::move on an 49 // analogous scoper, or another function that generates a temporary; passing by 50 // copy will NOT work. Here is an example using scoped_ptr: 51 // 52 // void TakesOwnership(scoped_ptr<Foo> arg) { 53 // // Do something with arg 54 // } 55 // scoped_ptr<Foo> CreateFoo() { 56 // // No need for calling std::move because we are constructing a temporary 57 // // for the return value. 58 // return scoped_ptr<Foo>(new Foo("new")); 59 // } 60 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { 61 // return std::move(arg); 62 // } 63 // 64 // { 65 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). 66 // TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay"). 67 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. 68 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. 69 // PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr. 70 // } 71 // 72 // Notice that if you do not call std::move when returning from PassThru(), or 73 // when invoking TakesOwnership(), the code will not compile because scopers 74 // are not copyable; they only implement move semantics which require calling 75 // std::move to signify a destructive transfer of state. CreateFoo() is 76 // different though because we are constructing a temporary on the return line 77 // and thus can avoid needing to call std::move. 78 79 #ifndef WEBRTC_BASE_SCOPED_PTR_H__ 80 #define WEBRTC_BASE_SCOPED_PTR_H__ 81 82 // This is an implementation designed to match the anticipated future TR2 83 // implementation of the scoped_ptr class. 84 85 #include <assert.h> 86 #include <stddef.h> 87 #include <stdlib.h> 88 89 #include <algorithm> // For std::swap(). 90 #include <cstddef> 91 92 #include "webrtc/base/constructormagic.h" 93 #include "webrtc/base/deprecation.h" 94 #include "webrtc/base/template_util.h" 95 #include "webrtc/typedefs.h" 96 97 namespace rtc { 98 99 // Function object which deletes its parameter, which must be a pointer. 100 // If C is an array type, invokes 'delete[]' on the parameter; otherwise, 101 // invokes 'delete'. The default deleter for scoped_ptr<T>. 102 template <class T> 103 struct DefaultDeleter { DefaultDeleterDefaultDeleter104 DefaultDeleter() {} DefaultDeleterDefaultDeleter105 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { 106 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor 107 // if U* is implicitly convertible to T* and U is not an array type. 108 // 109 // Correct implementation should use SFINAE to disable this 110 // constructor. However, since there are no other 1-argument constructors, 111 // using a static_assert based on is_convertible<> and requiring 112 // complete types is simpler and will cause compile failures for equivalent 113 // misuses. 114 // 115 // Note, the is_convertible<U*, T*> check also ensures that U is not an 116 // array. T is guaranteed to be a non-array, so any U* where U is an array 117 // cannot convert to T*. 118 enum { T_must_be_complete = sizeof(T) }; 119 enum { U_must_be_complete = sizeof(U) }; 120 static_assert((rtc::is_convertible<U*, T*>::value), 121 "U* must implicitly convert to T*"); 122 } operatorDefaultDeleter123 inline void operator()(T* ptr) const { 124 enum { type_must_be_complete = sizeof(T) }; 125 delete ptr; 126 } 127 }; 128 129 // Specialization of DefaultDeleter for array types. 130 template <class T> 131 struct DefaultDeleter<T[]> { 132 inline void operator()(T* ptr) const { 133 enum { type_must_be_complete = sizeof(T) }; 134 delete[] ptr; 135 } 136 137 private: 138 // Disable this operator for any U != T because it is undefined to execute 139 // an array delete when the static type of the array mismatches the dynamic 140 // type. 141 // 142 // References: 143 // C++98 [expr.delete]p3 144 // http://cplusplus.github.com/LWG/lwg-defects.html#938 145 template <typename U> void operator()(U* array) const; 146 }; 147 148 template <class T, int n> 149 struct DefaultDeleter<T[n]> { 150 // Never allow someone to declare something like scoped_ptr<int[10]>. 151 static_assert(sizeof(T) == -1, "do not use array with size as type"); 152 }; 153 154 // Function object which invokes 'free' on its parameter, which must be 155 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: 156 // 157 // scoped_ptr<int, rtc::FreeDeleter> foo_ptr( 158 // static_cast<int*>(malloc(sizeof(int)))); 159 struct FreeDeleter { 160 inline void operator()(void* ptr) const { 161 free(ptr); 162 } 163 }; 164 165 namespace internal { 166 167 template <typename T> 168 struct ShouldAbortOnSelfReset { 169 template <typename U> 170 static rtc::internal::NoType Test(const typename U::AllowSelfReset*); 171 172 template <typename U> 173 static rtc::internal::YesType Test(...); 174 175 static const bool value = 176 sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType); 177 }; 178 179 // Minimal implementation of the core logic of scoped_ptr, suitable for 180 // reuse in both scoped_ptr and its specializations. 181 template <class T, class D> 182 class scoped_ptr_impl { 183 public: 184 explicit scoped_ptr_impl(T* p) : data_(p) {} 185 186 // Initializer for deleters that have data parameters. 187 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} 188 189 // Templated constructor that destructively takes the value from another 190 // scoped_ptr_impl. 191 template <typename U, typename V> 192 scoped_ptr_impl(scoped_ptr_impl<U, V>* other) 193 : data_(other->release(), other->get_deleter()) { 194 // We do not support move-only deleters. We could modify our move 195 // emulation to have rtc::subtle::move() and rtc::subtle::forward() 196 // functions that are imperfect emulations of their C++11 equivalents, 197 // but until there's a requirement, just assume deleters are copyable. 198 } 199 200 template <typename U, typename V> 201 void TakeState(scoped_ptr_impl<U, V>* other) { 202 // See comment in templated constructor above regarding lack of support 203 // for move-only deleters. 204 reset(other->release()); 205 get_deleter() = other->get_deleter(); 206 } 207 208 ~scoped_ptr_impl() { 209 if (data_.ptr != nullptr) { 210 // Not using get_deleter() saves one function call in non-optimized 211 // builds. 212 static_cast<D&>(data_)(data_.ptr); 213 } 214 } 215 216 void reset(T* p) { 217 // This is a self-reset, which is no longer allowed for default deleters: 218 // https://crbug.com/162971 219 assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr); 220 221 // Note that running data_.ptr = p can lead to undefined behavior if 222 // get_deleter()(get()) deletes this. In order to prevent this, reset() 223 // should update the stored pointer before deleting its old value. 224 // 225 // However, changing reset() to use that behavior may cause current code to 226 // break in unexpected ways. If the destruction of the owned object 227 // dereferences the scoped_ptr when it is destroyed by a call to reset(), 228 // then it will incorrectly dispatch calls to |p| rather than the original 229 // value of |data_.ptr|. 230 // 231 // During the transition period, set the stored pointer to nullptr while 232 // deleting the object. Eventually, this safety check will be removed to 233 // prevent the scenario initially described from occurring and 234 // http://crbug.com/176091 can be closed. 235 T* old = data_.ptr; 236 data_.ptr = nullptr; 237 if (old != nullptr) 238 static_cast<D&>(data_)(old); 239 data_.ptr = p; 240 } 241 242 T* get() const { return data_.ptr; } 243 244 D& get_deleter() { return data_; } 245 const D& get_deleter() const { return data_; } 246 247 void swap(scoped_ptr_impl& p2) { 248 // Standard swap idiom: 'using std::swap' ensures that std::swap is 249 // present in the overload set, but we call swap unqualified so that 250 // any more-specific overloads can be used, if available. 251 using std::swap; 252 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); 253 swap(data_.ptr, p2.data_.ptr); 254 } 255 256 T* release() { 257 T* old_ptr = data_.ptr; 258 data_.ptr = nullptr; 259 return old_ptr; 260 } 261 262 T** accept() { 263 reset(nullptr); 264 return &(data_.ptr); 265 } 266 267 T** use() { 268 return &(data_.ptr); 269 } 270 271 private: 272 // Needed to allow type-converting constructor. 273 template <typename U, typename V> friend class scoped_ptr_impl; 274 275 // Use the empty base class optimization to allow us to have a D 276 // member, while avoiding any space overhead for it when D is an 277 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good 278 // discussion of this technique. 279 struct Data : public D { 280 explicit Data(T* ptr_in) : ptr(ptr_in) {} 281 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} 282 T* ptr; 283 }; 284 285 Data data_; 286 287 RTC_DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); 288 }; 289 290 } // namespace internal 291 292 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 293 // automatically deletes the pointer it holds (if any). 294 // That is, scoped_ptr<T> owns the T object that it points to. 295 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T 296 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you 297 // dereference it, you get the thread safety guarantees of T. 298 // 299 // The size of scoped_ptr is small. On most compilers, when using the 300 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will 301 // increase the size proportional to whatever state they need to have. See 302 // comments inside scoped_ptr_impl<> for details. 303 // 304 // Current implementation targets having a strict subset of C++11's 305 // unique_ptr<> features. Known deficiencies include not supporting move-only 306 // deleters, function pointers as deleters, and deleters with reference 307 // types. 308 template <class T, class D = rtc::DefaultDeleter<T> > 309 class scoped_ptr { 310 311 // TODO(ajm): If we ever import RefCountedBase, this check needs to be 312 // enabled. 313 //static_assert(rtc::internal::IsNotRefCounted<T>::value, 314 // "T is refcounted type and needs scoped refptr"); 315 316 public: 317 // The element and deleter types. 318 typedef T element_type; 319 typedef D deleter_type; 320 321 // Constructor. Defaults to initializing with nullptr. 322 scoped_ptr() : impl_(nullptr) {} 323 324 // Constructor. Takes ownership of p. 325 explicit scoped_ptr(element_type* p) : impl_(p) {} 326 327 // Constructor. Allows initialization of a stateful deleter. 328 scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} 329 330 // Constructor. Allows construction from a nullptr. 331 scoped_ptr(std::nullptr_t) : impl_(nullptr) {} 332 333 // Constructor. Allows construction from a scoped_ptr rvalue for a 334 // convertible type and deleter. 335 // 336 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct 337 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor 338 // has different post-conditions if D is a reference type. Since this 339 // implementation does not support deleters with reference type, 340 // we do not need a separate move constructor allowing us to avoid one 341 // use of SFINAE. You only need to care about this if you modify the 342 // implementation of scoped_ptr. 343 template <typename U, typename V> 344 scoped_ptr(scoped_ptr<U, V>&& other) 345 : impl_(&other.impl_) { 346 static_assert(!rtc::is_array<U>::value, "U cannot be an array"); 347 } 348 349 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible 350 // type and deleter. 351 // 352 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from 353 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated 354 // form has different requirements on for move-only Deleters. Since this 355 // implementation does not support move-only Deleters, we do not need a 356 // separate move assignment operator allowing us to avoid one use of SFINAE. 357 // You only need to care about this if you modify the implementation of 358 // scoped_ptr. 359 template <typename U, typename V> 360 scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) { 361 static_assert(!rtc::is_array<U>::value, "U cannot be an array"); 362 impl_.TakeState(&rhs.impl_); 363 return *this; 364 } 365 366 // operator=. Allows assignment from a nullptr. Deletes the currently owned 367 // object, if any. 368 scoped_ptr& operator=(std::nullptr_t) { 369 reset(); 370 return *this; 371 } 372 373 // Deleted copy constructor and copy assignment, to make the type move-only. 374 scoped_ptr(const scoped_ptr& other) = delete; 375 scoped_ptr& operator=(const scoped_ptr& other) = delete; 376 377 // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).) 378 // Deprecated; remove in March 2016 (bug 5373). 379 RTC_DEPRECATED scoped_ptr&& Pass() { 380 return std::move(*this); 381 } 382 383 // Reset. Deletes the currently owned object, if any. 384 // Then takes ownership of a new object, if given. 385 void reset(element_type* p = nullptr) { impl_.reset(p); } 386 387 // Accessors to get the owned object. 388 // operator* and operator-> will assert() if there is no current object. 389 element_type& operator*() const { 390 assert(impl_.get() != nullptr); 391 return *impl_.get(); 392 } 393 element_type* operator->() const { 394 assert(impl_.get() != nullptr); 395 return impl_.get(); 396 } 397 element_type* get() const { return impl_.get(); } 398 399 // Access to the deleter. 400 deleter_type& get_deleter() { return impl_.get_deleter(); } 401 const deleter_type& get_deleter() const { return impl_.get_deleter(); } 402 403 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not 404 // implicitly convertible to a real bool (which is dangerous). 405 // 406 // Note that this trick is only safe when the == and != operators 407 // are declared explicitly, as otherwise "scoped_ptr1 == 408 // scoped_ptr2" will compile but do the wrong thing (i.e., convert 409 // to Testable and then do the comparison). 410 private: 411 typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type> 412 scoped_ptr::*Testable; 413 414 public: 415 operator Testable() const { 416 return impl_.get() ? &scoped_ptr::impl_ : nullptr; 417 } 418 419 // Comparison operators. 420 // These return whether two scoped_ptr refer to the same object, not just to 421 // two different but equal objects. 422 bool operator==(const element_type* p) const { return impl_.get() == p; } 423 bool operator!=(const element_type* p) const { return impl_.get() != p; } 424 425 // Swap two scoped pointers. 426 void swap(scoped_ptr& p2) { 427 impl_.swap(p2.impl_); 428 } 429 430 // Release a pointer. 431 // The return value is the current pointer held by this object. If this object 432 // holds a nullptr, the return value is nullptr. After this operation, this 433 // object will hold a nullptr, and will not own the object any more. 434 element_type* release() WARN_UNUSED_RESULT { 435 return impl_.release(); 436 } 437 438 // Delete the currently held pointer and return a pointer 439 // to allow overwriting of the current pointer address. 440 element_type** accept() WARN_UNUSED_RESULT { 441 return impl_.accept(); 442 } 443 444 // Return a pointer to the current pointer address. 445 element_type** use() WARN_UNUSED_RESULT { 446 return impl_.use(); 447 } 448 449 private: 450 // Needed to reach into |impl_| in the constructor. 451 template <typename U, typename V> friend class scoped_ptr; 452 rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_; 453 454 // Forbidden for API compatibility with std::unique_ptr. 455 explicit scoped_ptr(int disallow_construction_from_null); 456 457 // Forbid comparison of scoped_ptr types. If U != T, it totally 458 // doesn't make sense, and if U == T, it still doesn't make sense 459 // because you should never have the same object owned by two different 460 // scoped_ptrs. 461 template <class U> bool operator==(scoped_ptr<U> const& p2) const; 462 template <class U> bool operator!=(scoped_ptr<U> const& p2) const; 463 }; 464 465 template <class T, class D> 466 class scoped_ptr<T[], D> { 467 public: 468 // The element and deleter types. 469 typedef T element_type; 470 typedef D deleter_type; 471 472 // Constructor. Defaults to initializing with nullptr. 473 scoped_ptr() : impl_(nullptr) {} 474 475 // Constructor. Stores the given array. Note that the argument's type 476 // must exactly match T*. In particular: 477 // - it cannot be a pointer to a type derived from T, because it is 478 // inherently unsafe in the general case to access an array through a 479 // pointer whose dynamic type does not match its static type (eg., if 480 // T and the derived types had different sizes access would be 481 // incorrectly calculated). Deletion is also always undefined 482 // (C++98 [expr.delete]p3). If you're doing this, fix your code. 483 // - it cannot be const-qualified differently from T per unique_ptr spec 484 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting 485 // to work around this may use implicit_cast<const T*>(). 486 // However, because of the first bullet in this comment, users MUST 487 // NOT use implicit_cast<Base*>() to upcast the static type of the array. 488 explicit scoped_ptr(element_type* array) : impl_(array) {} 489 490 // Constructor. Allows construction from a nullptr. 491 scoped_ptr(std::nullptr_t) : impl_(nullptr) {} 492 493 // Constructor. Allows construction from a scoped_ptr rvalue. 494 scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} 495 496 // operator=. Allows assignment from a scoped_ptr rvalue. 497 scoped_ptr& operator=(scoped_ptr&& rhs) { 498 impl_.TakeState(&rhs.impl_); 499 return *this; 500 } 501 502 // operator=. Allows assignment from a nullptr. Deletes the currently owned 503 // array, if any. 504 scoped_ptr& operator=(std::nullptr_t) { 505 reset(); 506 return *this; 507 } 508 509 // Deleted copy constructor and copy assignment, to make the type move-only. 510 scoped_ptr(const scoped_ptr& other) = delete; 511 scoped_ptr& operator=(const scoped_ptr& other) = delete; 512 513 // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).) 514 // Deprecated; remove in March 2016 (bug 5373). 515 RTC_DEPRECATED scoped_ptr&& Pass() { 516 return std::move(*this); 517 } 518 519 // Reset. Deletes the currently owned array, if any. 520 // Then takes ownership of a new object, if given. 521 void reset(element_type* array = nullptr) { impl_.reset(array); } 522 523 // Accessors to get the owned array. 524 element_type& operator[](size_t i) const { 525 assert(impl_.get() != nullptr); 526 return impl_.get()[i]; 527 } 528 element_type* get() const { return impl_.get(); } 529 530 // Access to the deleter. 531 deleter_type& get_deleter() { return impl_.get_deleter(); } 532 const deleter_type& get_deleter() const { return impl_.get_deleter(); } 533 534 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not 535 // implicitly convertible to a real bool (which is dangerous). 536 private: 537 typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type> 538 scoped_ptr::*Testable; 539 540 public: 541 operator Testable() const { 542 return impl_.get() ? &scoped_ptr::impl_ : nullptr; 543 } 544 545 // Comparison operators. 546 // These return whether two scoped_ptr refer to the same object, not just to 547 // two different but equal objects. 548 bool operator==(element_type* array) const { return impl_.get() == array; } 549 bool operator!=(element_type* array) const { return impl_.get() != array; } 550 551 // Swap two scoped pointers. 552 void swap(scoped_ptr& p2) { 553 impl_.swap(p2.impl_); 554 } 555 556 // Release a pointer. 557 // The return value is the current pointer held by this object. If this object 558 // holds a nullptr, the return value is nullptr. After this operation, this 559 // object will hold a nullptr, and will not own the object any more. 560 element_type* release() WARN_UNUSED_RESULT { 561 return impl_.release(); 562 } 563 564 // Delete the currently held pointer and return a pointer 565 // to allow overwriting of the current pointer address. 566 element_type** accept() WARN_UNUSED_RESULT { 567 return impl_.accept(); 568 } 569 570 // Return a pointer to the current pointer address. 571 element_type** use() WARN_UNUSED_RESULT { 572 return impl_.use(); 573 } 574 575 private: 576 // Force element_type to be a complete type. 577 enum { type_must_be_complete = sizeof(element_type) }; 578 579 // Actually hold the data. 580 rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_; 581 582 // Disable initialization from any type other than element_type*, by 583 // providing a constructor that matches such an initialization, but is 584 // private and has no definition. This is disabled because it is not safe to 585 // call delete[] on an array whose static type does not match its dynamic 586 // type. 587 template <typename U> explicit scoped_ptr(U* array); 588 explicit scoped_ptr(int disallow_construction_from_null); 589 590 // Disable reset() from any type other than element_type*, for the same 591 // reasons as the constructor above. 592 template <typename U> void reset(U* array); 593 void reset(int disallow_reset_from_null); 594 595 // Forbid comparison of scoped_ptr types. If U != T, it totally 596 // doesn't make sense, and if U == T, it still doesn't make sense 597 // because you should never have the same object owned by two different 598 // scoped_ptrs. 599 template <class U> bool operator==(scoped_ptr<U> const& p2) const; 600 template <class U> bool operator!=(scoped_ptr<U> const& p2) const; 601 }; 602 603 template <class T, class D> 604 void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) { 605 p1.swap(p2); 606 } 607 608 } // namespace rtc 609 610 template <class T, class D> 611 bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) { 612 return p1 == p2.get(); 613 } 614 615 template <class T, class D> 616 bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) { 617 return p1 != p2.get(); 618 } 619 620 // A function to convert T* into scoped_ptr<T> 621 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation 622 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) 623 template <typename T> 624 rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) { 625 return rtc::scoped_ptr<T>(ptr); 626 } 627 628 #endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__ 629