1// Copyright 2014 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package http2 6 7import "fmt" 8 9// WriteScheduler is the interface implemented by HTTP/2 write schedulers. 10// Methods are never called concurrently. 11type WriteScheduler interface { 12 // OpenStream opens a new stream in the write scheduler. 13 // It is illegal to call this with streamID=0 or with a streamID that is 14 // already open -- the call may panic. 15 OpenStream(streamID uint32, options OpenStreamOptions) 16 17 // CloseStream closes a stream in the write scheduler. Any frames queued on 18 // this stream should be discarded. It is illegal to call this on a stream 19 // that is not open -- the call may panic. 20 CloseStream(streamID uint32) 21 22 // AdjustStream adjusts the priority of the given stream. This may be called 23 // on a stream that has not yet been opened or has been closed. Note that 24 // RFC 7540 allows PRIORITY frames to be sent on streams in any state. See: 25 // https://tools.ietf.org/html/rfc7540#section-5.1 26 AdjustStream(streamID uint32, priority PriorityParam) 27 28 // Push queues a frame in the scheduler. In most cases, this will not be 29 // called with wr.StreamID()!=0 unless that stream is currently open. The one 30 // exception is RST_STREAM frames, which may be sent on idle or closed streams. 31 Push(wr FrameWriteRequest) 32 33 // Pop dequeues the next frame to write. Returns false if no frames can 34 // be written. Frames with a given wr.StreamID() are Pop'd in the same 35 // order they are Push'd. 36 Pop() (wr FrameWriteRequest, ok bool) 37} 38 39// OpenStreamOptions specifies extra options for WriteScheduler.OpenStream. 40type OpenStreamOptions struct { 41 // PusherID is zero if the stream was initiated by the client. Otherwise, 42 // PusherID names the stream that pushed the newly opened stream. 43 PusherID uint32 44} 45 46// FrameWriteRequest is a request to write a frame. 47type FrameWriteRequest struct { 48 // write is the interface value that does the writing, once the 49 // WriteScheduler has selected this frame to write. The write 50 // functions are all defined in write.go. 51 write writeFramer 52 53 // stream is the stream on which this frame will be written. 54 // nil for non-stream frames like PING and SETTINGS. 55 stream *stream 56 57 // done, if non-nil, must be a buffered channel with space for 58 // 1 message and is sent the return value from write (or an 59 // earlier error) when the frame has been written. 60 done chan error 61} 62 63// StreamID returns the id of the stream this frame will be written to. 64// 0 is used for non-stream frames such as PING and SETTINGS. 65func (wr FrameWriteRequest) StreamID() uint32 { 66 if wr.stream == nil { 67 if se, ok := wr.write.(StreamError); ok { 68 // (*serverConn).resetStream doesn't set 69 // stream because it doesn't necessarily have 70 // one. So special case this type of write 71 // message. 72 return se.StreamID 73 } 74 return 0 75 } 76 return wr.stream.id 77} 78 79// DataSize returns the number of flow control bytes that must be consumed 80// to write this entire frame. This is 0 for non-DATA frames. 81func (wr FrameWriteRequest) DataSize() int { 82 if wd, ok := wr.write.(*writeData); ok { 83 return len(wd.p) 84 } 85 return 0 86} 87 88// Consume consumes min(n, available) bytes from this frame, where available 89// is the number of flow control bytes available on the stream. Consume returns 90// 0, 1, or 2 frames, where the integer return value gives the number of frames 91// returned. 92// 93// If flow control prevents consuming any bytes, this returns (_, _, 0). If 94// the entire frame was consumed, this returns (wr, _, 1). Otherwise, this 95// returns (consumed, rest, 2), where 'consumed' contains the consumed bytes and 96// 'rest' contains the remaining bytes. The consumed bytes are deducted from the 97// underlying stream's flow control budget. 98func (wr FrameWriteRequest) Consume(n int32) (FrameWriteRequest, FrameWriteRequest, int) { 99 var empty FrameWriteRequest 100 101 // Non-DATA frames are always consumed whole. 102 wd, ok := wr.write.(*writeData) 103 if !ok || len(wd.p) == 0 { 104 return wr, empty, 1 105 } 106 107 // Might need to split after applying limits. 108 allowed := wr.stream.flow.available() 109 if n < allowed { 110 allowed = n 111 } 112 if wr.stream.sc.maxFrameSize < allowed { 113 allowed = wr.stream.sc.maxFrameSize 114 } 115 if allowed <= 0 { 116 return empty, empty, 0 117 } 118 if len(wd.p) > int(allowed) { 119 wr.stream.flow.take(allowed) 120 consumed := FrameWriteRequest{ 121 stream: wr.stream, 122 write: &writeData{ 123 streamID: wd.streamID, 124 p: wd.p[:allowed], 125 // Even if the original had endStream set, there 126 // are bytes remaining because len(wd.p) > allowed, 127 // so we know endStream is false. 128 endStream: false, 129 }, 130 // Our caller is blocking on the final DATA frame, not 131 // this intermediate frame, so no need to wait. 132 done: nil, 133 } 134 rest := FrameWriteRequest{ 135 stream: wr.stream, 136 write: &writeData{ 137 streamID: wd.streamID, 138 p: wd.p[allowed:], 139 endStream: wd.endStream, 140 }, 141 done: wr.done, 142 } 143 return consumed, rest, 2 144 } 145 146 // The frame is consumed whole. 147 // NB: This cast cannot overflow because allowed is <= math.MaxInt32. 148 wr.stream.flow.take(int32(len(wd.p))) 149 return wr, empty, 1 150} 151 152// String is for debugging only. 153func (wr FrameWriteRequest) String() string { 154 var des string 155 if s, ok := wr.write.(fmt.Stringer); ok { 156 des = s.String() 157 } else { 158 des = fmt.Sprintf("%T", wr.write) 159 } 160 return fmt.Sprintf("[FrameWriteRequest stream=%d, ch=%v, writer=%v]", wr.StreamID(), wr.done != nil, des) 161} 162 163// replyToWriter sends err to wr.done and panics if the send must block 164// This does nothing if wr.done is nil. 165func (wr *FrameWriteRequest) replyToWriter(err error) { 166 if wr.done == nil { 167 return 168 } 169 select { 170 case wr.done <- err: 171 default: 172 panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wr.write)) 173 } 174 wr.write = nil // prevent use (assume it's tainted after wr.done send) 175} 176 177// writeQueue is used by implementations of WriteScheduler. 178type writeQueue struct { 179 s []FrameWriteRequest 180} 181 182func (q *writeQueue) empty() bool { return len(q.s) == 0 } 183 184func (q *writeQueue) push(wr FrameWriteRequest) { 185 q.s = append(q.s, wr) 186} 187 188func (q *writeQueue) shift() FrameWriteRequest { 189 if len(q.s) == 0 { 190 panic("invalid use of queue") 191 } 192 wr := q.s[0] 193 // TODO: less copy-happy queue. 194 copy(q.s, q.s[1:]) 195 q.s[len(q.s)-1] = FrameWriteRequest{} 196 q.s = q.s[:len(q.s)-1] 197 return wr 198} 199 200// consume consumes up to n bytes from q.s[0]. If the frame is 201// entirely consumed, it is removed from the queue. If the frame 202// is partially consumed, the frame is kept with the consumed 203// bytes removed. Returns true iff any bytes were consumed. 204func (q *writeQueue) consume(n int32) (FrameWriteRequest, bool) { 205 if len(q.s) == 0 { 206 return FrameWriteRequest{}, false 207 } 208 consumed, rest, numresult := q.s[0].Consume(n) 209 switch numresult { 210 case 0: 211 return FrameWriteRequest{}, false 212 case 1: 213 q.shift() 214 case 2: 215 q.s[0] = rest 216 } 217 return consumed, true 218} 219 220type writeQueuePool []*writeQueue 221 222// put inserts an unused writeQueue into the pool. 223func (p *writeQueuePool) put(q *writeQueue) { 224 for i := range q.s { 225 q.s[i] = FrameWriteRequest{} 226 } 227 q.s = q.s[:0] 228 *p = append(*p, q) 229} 230 231// get returns an empty writeQueue. 232func (p *writeQueuePool) get() *writeQueue { 233 ln := len(*p) 234 if ln == 0 { 235 return new(writeQueue) 236 } 237 x := ln - 1 238 q := (*p)[x] 239 (*p)[x] = nil 240 *p = (*p)[:x] 241 return q 242} 243