/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | gamma_test.py | 30 from tensorflow.python.ops.distributions import gamma as gamma_lib 55 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 57 self.assertEqual(self.evaluate(gamma.batch_shape_tensor()), (5,)) 58 self.assertEqual(gamma.batch_shape, tensor_shape.TensorShape([5])) 59 self.assertAllEqual(self.evaluate(gamma.event_shape_tensor()), []) 60 self.assertEqual(gamma.event_shape, tensor_shape.TensorShape([])) 69 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 70 log_pdf = gamma.log_prob(x) 72 pdf = gamma.prob(x) 76 expected_log_pdf = stats.gamma.logpdf(x, alpha_v, scale=1 / beta_v) [all …]
|
/external/python/cpython2/Lib/test/ |
D | math_testcases.txt | 170 -- lgamma: log of absolute value of the gamma function -- 250 -- inputs for which gamma(x) is tiny 275 -- gamma: Gamma function -- 279 gam0000 gamma 0.0 -> inf divide-by-zero 280 gam0001 gamma -0.0 -> -inf divide-by-zero 281 gam0002 gamma inf -> inf 282 gam0003 gamma -inf -> nan invalid 283 gam0004 gamma nan -> nan 286 gam0010 gamma -1 -> nan invalid 287 gam0011 gamma -2 -> nan invalid [all …]
|
/external/ImageMagick/MagickCore/ |
D | composite-private.h | 57 gamma, in CompositePixelOver() local 68 gamma=Sa+Da-Sa*Da; in CompositePixelOver() 69 gamma=PerceptibleReciprocal(gamma); in CompositePixelOver() 86 composite[i]=ClampToQuantum(gamma*MagickOver_((double) p->red,alpha, in CompositePixelOver() 92 composite[i]=ClampToQuantum(gamma*MagickOver_((double) p->green,alpha, in CompositePixelOver() 98 composite[i]=ClampToQuantum(gamma*MagickOver_((double) p->blue,alpha, in CompositePixelOver() 104 composite[i]=ClampToQuantum(gamma*MagickOver_((double) p->black,alpha, in CompositePixelOver() 127 gamma, in CompositePixelInfoOver() local 135 gamma=Sa+Da-Sa*Da; in CompositePixelInfoOver() 136 composite->alpha=(double) QuantumRange*RoundToUnity(gamma); in CompositePixelInfoOver() [all …]
|
D | composite.c | 383 gamma; in CompositeOverImage() local 497 gamma=PerceptibleReciprocal(alpha); in CompositeOverImage() 498 pixel=QuantumRange*gamma*(Sca+Dca*(1.0-Sa)); in CompositeOverImage() 1291 gamma; local 1677 gamma=PerceptibleReciprocal(1.0-alpha); 1682 gamma=PerceptibleReciprocal(alpha); 1702 pixel=gamma*(source_dissolve*Sa*Sc+canvas_dissolve*Da*Dc); 1743 pixel=QuantumRange*gamma*(Sa*Da+Dca*(1.0-Sa)); 1748 pixel=QuantumRange*gamma*(Dca*(1.0-Sa)); 1751 pixel=QuantumRange*gamma*(Sa*Da-Sa*Da*MagickMin(1.0,(1.0-DcaDa)* [all …]
|
D | pixel.c | 4429 gamma; in CatromWeights() local 4446 gamma=(*weights)[3]-(*weights)[0]; in CatromWeights() 4447 (*weights)[1]=alpha-(*weights)[0]+gamma; in CatromWeights() 4448 (*weights)[2]=x-(*weights)[3]-gamma; in CatromWeights() 4493 gamma, in InterpolatePixelChannel() local 4572 gamma=PerceptibleReciprocal(alpha[i])/count; in InterpolatePixelChannel() 4573 *pixel+=gamma*pixels[i]; in InterpolatePixelChannel() 4607 gamma=((epsilon.y*(epsilon.x*alpha[0]+delta.x*alpha[1])+delta.y* in InterpolatePixelChannel() 4609 gamma=PerceptibleReciprocal(gamma); in InterpolatePixelChannel() 4610 *pixel=gamma*(epsilon.y*(epsilon.x*pixels[0]+delta.x*pixels[1])+delta.y* in InterpolatePixelChannel() [all …]
|
/external/python/cpython3/Lib/test/ |
D | math_testcases.txt | 170 -- lgamma: log of absolute value of the gamma function -- 250 -- inputs for which gamma(x) is tiny 275 -- gamma: Gamma function -- 279 gam0000 gamma 0.0 -> inf divide-by-zero 280 gam0001 gamma -0.0 -> -inf divide-by-zero 281 gam0002 gamma inf -> inf 282 gam0003 gamma -inf -> nan invalid 283 gam0004 gamma nan -> nan 286 gam0010 gamma -1 -> nan invalid 287 gam0011 gamma -2 -> nan invalid [all …]
|
/external/skia/src/core/ |
D | SkMaskGamma.cpp | 16 SkScalar toLuma(SkScalar SkDEBUGCODE(gamma), SkScalar luminance) const override { in toLuma() argument 17 SkASSERT(SK_Scalar1 == gamma); in toLuma() 20 SkScalar fromLuma(SkScalar SkDEBUGCODE(gamma), SkScalar luma) const override { in fromLuma() argument 21 SkASSERT(SK_Scalar1 == gamma); in fromLuma() 27 SkScalar toLuma(SkScalar gamma, SkScalar luminance) const override { in toLuma() argument 28 return SkScalarPow(luminance, gamma); in toLuma() 30 SkScalar fromLuma(SkScalar gamma, SkScalar luma) const override { in fromLuma() argument 31 return SkScalarPow(luma, SkScalarInvert(gamma)); in fromLuma() 36 SkScalar toLuma(SkScalar SkDEBUGCODE(gamma), SkScalar luminance) const override { in toLuma() argument 37 SkASSERT(0 == gamma); in toLuma() [all …]
|
D | SkMaskGamma.h | 29 virtual SkScalar toLuma(SkScalar gamma, SkScalar luminance) const = 0; 31 virtual SkScalar fromLuma(SkScalar gamma, SkScalar luma) const = 0; 34 static U8CPU computeLuminance(SkScalar gamma, SkColor c) { in computeLuminance() argument 35 const SkColorSpaceLuminance& luminance = Fetch(gamma); in computeLuminance() 36 SkScalar r = luminance.toLuma(gamma, SkIntToScalar(SkColorGetR(c)) / 255); in computeLuminance() 37 SkScalar g = luminance.toLuma(gamma, SkIntToScalar(SkColorGetG(c)) / 255); in computeLuminance() 38 SkScalar b = luminance.toLuma(gamma, SkIntToScalar(SkColorGetB(c)) / 255); in computeLuminance() 43 return SkScalarRoundToInt(luminance.fromLuma(gamma, luma) * 255); in computeLuminance() 47 static const SkColorSpaceLuminance& Fetch(SkScalar gamma);
|
/external/skqp/src/core/ |
D | SkMaskGamma.cpp | 16 SkScalar toLuma(SkScalar SkDEBUGCODE(gamma), SkScalar luminance) const override { in toLuma() argument 17 SkASSERT(SK_Scalar1 == gamma); in toLuma() 20 SkScalar fromLuma(SkScalar SkDEBUGCODE(gamma), SkScalar luma) const override { in fromLuma() argument 21 SkASSERT(SK_Scalar1 == gamma); in fromLuma() 27 SkScalar toLuma(SkScalar gamma, SkScalar luminance) const override { in toLuma() argument 28 return SkScalarPow(luminance, gamma); in toLuma() 30 SkScalar fromLuma(SkScalar gamma, SkScalar luma) const override { in fromLuma() argument 31 return SkScalarPow(luma, SkScalarInvert(gamma)); in fromLuma() 36 SkScalar toLuma(SkScalar SkDEBUGCODE(gamma), SkScalar luminance) const override { in toLuma() argument 37 SkASSERT(0 == gamma); in toLuma() [all …]
|
D | SkMaskGamma.h | 29 virtual SkScalar toLuma(SkScalar gamma, SkScalar luminance) const = 0; 31 virtual SkScalar fromLuma(SkScalar gamma, SkScalar luma) const = 0; 34 static U8CPU computeLuminance(SkScalar gamma, SkColor c) { in computeLuminance() argument 35 const SkColorSpaceLuminance& luminance = Fetch(gamma); in computeLuminance() 36 SkScalar r = luminance.toLuma(gamma, SkIntToScalar(SkColorGetR(c)) / 255); in computeLuminance() 37 SkScalar g = luminance.toLuma(gamma, SkIntToScalar(SkColorGetG(c)) / 255); in computeLuminance() 38 SkScalar b = luminance.toLuma(gamma, SkIntToScalar(SkColorGetB(c)) / 255); in computeLuminance() 43 return SkScalarRoundToInt(luminance.fromLuma(gamma, luma) * 255); in computeLuminance() 47 static const SkColorSpaceLuminance& Fetch(SkScalar gamma);
|
/external/tensorflow/tensorflow/core/kernels/ |
D | smooth-hinge-loss.h | 45 (label - wx - gamma * current_dual) / in ComputeUpdatedDual() 46 (num_partitions * example_weight * weighted_example_norm + gamma); in ComputeUpdatedDual() 64 return (-y_alpha + 0.5 * gamma * current_dual * current_dual) * in ComputeDualLoss() 72 if (y_wx <= 1 - gamma) return (1 - y_wx - gamma / 2) * example_weight; in ComputePrimalLoss() 73 return (1 - y_wx) * (1 - y_wx) * example_weight * 0.5 / gamma; in ComputePrimalLoss() 97 if (label * wx <= 1 - gamma) { in PrimalLossDerivative() 100 return (wx - label) / gamma; in PrimalLossDerivative() 103 double SmoothnessConstant() const final { return gamma; } in SmoothnessConstant() 108 const double gamma = 1;
|
D | batch_norm_op.cc | 52 const Tensor& gamma = context->input(4); in Compute() local 66 OP_REQUIRES(context, gamma.dims() == 1, in Compute() 68 gamma.shape().DebugString())); in Compute() 76 var.vec<T>(), beta.vec<T>(), gamma.vec<T>(), variance_epsilon_, in Compute() 101 const Tensor& gamma = context->input(3); in Compute() local 113 OP_REQUIRES(context, gamma.dims() == 1, in Compute() 115 gamma.shape().DebugString())); in Compute() 137 OP_REQUIRES_OK(context, context->allocate_output(4, gamma.shape(), &dg)); in Compute() 156 var.vec<T>(), gamma.vec<T>(), out_backprop.tensor<T, 4>(), in Compute() 186 typename TTypes<T>::ConstVec beta, typename TTypes<T>::ConstVec gamma, \ [all …]
|
/external/tensorflow/tensorflow/contrib/solvers/python/ops/ |
D | linear_equations.py | 91 alpha = state.gamma / util.dot(state.p, z) 95 gamma = util.dot(r, r) 96 beta = gamma / state.gamma 100 gamma = util.dot(r, q) 101 beta = gamma / state.gamma 103 return i + 1, cg_state(i + 1, x, r, p, gamma) 122 state = cg_state(i=i, x=x, r=r0, p=p0, gamma=gamma0) 130 gamma=state.gamma)
|
D | least_squares.py | 81 return math_ops.logical_and(i < max_iter, state.gamma > tol) 86 alpha = state.gamma / util.l2norm_squared(q) 90 gamma = util.l2norm_squared(s) 91 beta = gamma / state.gamma 93 return i + 1, cgls_state(i + 1, x, r, p, gamma) 105 state = cgls_state(i=i, x=x, r=rhs, p=s0, gamma=gamma0) 113 gamma=state.gamma)
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
D | ChiSquaredDistributionImpl.java | 42 private GammaDistribution gamma; field in ChiSquaredDistributionImpl 81 gamma = new GammaDistributionImpl(df / 2.0, 2.0); in ChiSquaredDistributionImpl() 100 gamma.setAlpha(degreesOfFreedom / 2.0); in setDegreesOfFreedomInternal() 108 return gamma.getAlpha() * 2.0; in getDegreesOfFreedom() 132 return gamma.density(x); in density() 143 return gamma.cumulativeProbability(x); in cumulativeProbability() 182 return Double.MIN_VALUE * gamma.getBeta(); in getDomainLowerBound() 256 this.gamma = g; in setGammaInternal()
|
/external/libpng/tests/ |
D | pngstest | 16 gamma="$1" 27 test "$gamma" = "linear" && g="$f";; 30 test "$gamma" = "sRGB" && g="$f";; 33 test "$gamma" = "1.8" && g="$f";; 36 test "$gamma" = "none" && g="$f";; 54 exec ./pngstest --tmpfile "${gamma}-${alpha}-" --log ${1+"$@"} $args
|
/external/eigen/unsupported/test/ |
D | cxx11_tensor_sugar.cpp | 44 const float gamma = 0.14f; in test_scalar_sugar_add_mul() local 46 Tensor<float, 3> R = A.constant(gamma) + A * A.constant(alpha) + B * B.constant(beta); in test_scalar_sugar_add_mul() 47 Tensor<float, 3> S = A * alpha + B * beta + gamma; in test_scalar_sugar_add_mul() 48 Tensor<float, 3> T = gamma + alpha * A + beta * B; in test_scalar_sugar_add_mul() 64 const float gamma = 0.14f; in test_scalar_sugar_sub_div() local 67 Tensor<float, 3> R = A.constant(gamma) - A / A.constant(alpha) in test_scalar_sugar_sub_div() 69 Tensor<float, 3> S = gamma - A / alpha - beta / B - delta; in test_scalar_sugar_sub_div()
|
/external/ImageMagick/coders/ |
D | hdr.c | 144 gamma; in ReadHDRImage() local 306 image->gamma=StringToDouble(value,(char **) NULL); in ReadHDRImage() 488 gamma=pow(2.0,pixel[3]-(128.0+8.0)); in ReadHDRImage() 489 SetPixelRed(image,ClampToQuantum(QuantumRange*gamma*pixel[0]),q); in ReadHDRImage() 490 SetPixelGreen(image,ClampToQuantum(QuantumRange*gamma*pixel[1]),q); in ReadHDRImage() 491 SetPixelBlue(image,ClampToQuantum(QuantumRange*gamma*pixel[2]),q); in ReadHDRImage() 726 if (image->gamma != 0.0) in WriteHDRImage() 729 image->gamma); in WriteHDRImage() 771 gamma; in WriteHDRImage() local 777 gamma=QuantumScale*GetPixelRed(image,p); in WriteHDRImage() [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | normalization.py | 123 beta, gamma = None, None 145 gamma = variables.model_variable('gamma', 152 gamma = array_ops.reshape(gamma, params_shape_broadcast) 159 inputs, mean, variance, beta, gamma, epsilon, name='instancenorm') 327 beta, gamma = None, None 349 gamma = variables.model_variable('gamma', 355 gamma = array_ops.reshape(gamma, params_shape_broadcast) 372 if gamma is not None: 373 gain *= gamma 374 offset *= gamma
|
/external/libaom/libaom/av1/common/x86/ |
D | warp_plane_sse4.c | 457 static INLINE void prepare_vertical_filter_coeffs(int gamma, int sy, in prepare_vertical_filter_coeffs() argument 460 (__m128i *)(warped_filter + ((sy + 0 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 462 (__m128i *)(warped_filter + ((sy + 2 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 464 (__m128i *)(warped_filter + ((sy + 4 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 466 (__m128i *)(warped_filter + ((sy + 6 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 480 (__m128i *)(warped_filter + ((sy + 1 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 482 (__m128i *)(warped_filter + ((sy + 3 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 484 (__m128i *)(warped_filter + ((sy + 5 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 486 (__m128i *)(warped_filter + ((sy + 7 * gamma) >> WARPEDDIFF_PREC_BITS))); in prepare_vertical_filter_coeffs() 657 uint8_t *pred, __m128i *tmp, ConvolveParams *conv_params, int16_t gamma, in warp_vertical_filter() argument [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/direct/ |
D | MultiDirectional.java | 40 private final double gamma; field in MultiDirectional 47 this.gamma = 0.5; in MultiDirectional() 54 public MultiDirectional(final double khi, final double gamma) { in MultiDirectional() argument 56 this.gamma = gamma; in MultiDirectional() 90 final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator); in iterateSimplex()
|
D | NelderMead.java | 42 private final double gamma; field in NelderMead 54 this.gamma = 0.5; in NelderMead() 65 final double gamma, final double sigma) { in NelderMead() argument 68 this.gamma = gamma; in NelderMead() 139 xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); in iterateSimplex() 154 xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]); in iterateSimplex()
|
/external/libaom/libaom/test/ |
D | warp_filter_test_util.cc | 30 int16_t *alpha, int16_t *beta, int16_t *gamma, in generate_warped_model() argument 68 *gamma = clamp(((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) / mat[2], in generate_warped_model() 76 (4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS))) in generate_warped_model() 83 *gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) * in generate_warped_model() 133 int16_t alpha, beta, gamma, delta; in RunSpeedTest() local 136 generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, in RunSpeedTest() 159 sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); in RunSpeedTest() 194 int16_t alpha, beta, gamma, delta; in RunCheckOutput() local 211 generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, in RunCheckOutput() 233 beta, gamma, delta); in RunCheckOutput() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_batchnorm_test.py | 40 def _npBatchNorm(self, x, m, v, beta, gamma, epsilon, argument 43 y = y * gamma if scale_after_normalization else y 46 def _opsBatchNorm(self, x, m, v, beta, gamma, epsilon, argument 50 y = gamma * y 53 def _tfBatchNormV1(self, x, m, v, beta, gamma, epsilon, argument 58 x, m, v, beta, gamma, epsilon, scale_after_normalization) 60 def _tfBatchNormV1BW(self, x, m, v, beta, gamma, epsilon, argument 64 x, m, v, beta, gamma, epsilon, scale_after_normalization) 66 def _tfBatchNormV2(self, x, m, v, beta, gamma, epsilon, argument 71 gamma if scale_after_normalization else [all …]
|
/external/libpng/contrib/libtests/ |
D | gentests.sh | 68 for gamma in "" --sRGB --linear --1.8 70 case "$gamma" in 80 gname="-$gamma";; 82 "$mp" $gamma "$1" "$2" "test-$1-$2$gname.png"
|