• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33 
34 #include "gtest/gtest.h"
35 
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
41       || testing::GTEST_FLAG(break_on_failure)
42       || testing::GTEST_FLAG(catch_exceptions)
43       || testing::GTEST_FLAG(color) != "unknown"
44       || testing::GTEST_FLAG(filter) != "unknown"
45       || testing::GTEST_FLAG(list_tests)
46       || testing::GTEST_FLAG(output) != "unknown"
47       || testing::GTEST_FLAG(print_time)
48       || testing::GTEST_FLAG(random_seed)
49       || testing::GTEST_FLAG(repeat) > 0
50       || testing::GTEST_FLAG(show_internal_stack_frames)
51       || testing::GTEST_FLAG(shuffle)
52       || testing::GTEST_FLAG(stack_trace_depth) > 0
53       || testing::GTEST_FLAG(stream_result_to) != "unknown"
54       || testing::GTEST_FLAG(throw_on_failure);
55   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
56 }
57 
58 #include <limits.h>  // For INT_MAX.
59 #include <stdlib.h>
60 #include <string.h>
61 #include <time.h>
62 
63 #include <map>
64 #include <vector>
65 #include <ostream>
66 #include <unordered_set>
67 
68 #include "gtest/gtest-spi.h"
69 #include "src/gtest-internal-inl.h"
70 
71 namespace testing {
72 namespace internal {
73 
74 #if GTEST_CAN_STREAM_RESULTS_
75 
76 class StreamingListenerTest : public Test {
77  public:
78   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
79    public:
80     // Sends a string to the socket.
Send(const std::string & message)81     void Send(const std::string& message) override { output_ += message; }
82 
83     std::string output_;
84   };
85 
StreamingListenerTest()86   StreamingListenerTest()
87       : fake_sock_writer_(new FakeSocketWriter),
88         streamer_(fake_sock_writer_),
89         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
90                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
91 
92  protected:
output()93   std::string* output() { return &(fake_sock_writer_->output_); }
94 
95   FakeSocketWriter* const fake_sock_writer_;
96   StreamingListener streamer_;
97   UnitTest unit_test_;
98   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
99 };
100 
TEST_F(StreamingListenerTest,OnTestProgramEnd)101 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
102   *output() = "";
103   streamer_.OnTestProgramEnd(unit_test_);
104   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
105 }
106 
TEST_F(StreamingListenerTest,OnTestIterationEnd)107 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
108   *output() = "";
109   streamer_.OnTestIterationEnd(unit_test_, 42);
110   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
111 }
112 
TEST_F(StreamingListenerTest,OnTestCaseStart)113 TEST_F(StreamingListenerTest, OnTestCaseStart) {
114   *output() = "";
115   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", nullptr, nullptr));
116   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
117 }
118 
TEST_F(StreamingListenerTest,OnTestCaseEnd)119 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
120   *output() = "";
121   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", nullptr, nullptr));
122   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
123 }
124 
TEST_F(StreamingListenerTest,OnTestStart)125 TEST_F(StreamingListenerTest, OnTestStart) {
126   *output() = "";
127   streamer_.OnTestStart(test_info_obj_);
128   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
129 }
130 
TEST_F(StreamingListenerTest,OnTestEnd)131 TEST_F(StreamingListenerTest, OnTestEnd) {
132   *output() = "";
133   streamer_.OnTestEnd(test_info_obj_);
134   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
135 }
136 
TEST_F(StreamingListenerTest,OnTestPartResult)137 TEST_F(StreamingListenerTest, OnTestPartResult) {
138   *output() = "";
139   streamer_.OnTestPartResult(TestPartResult(
140       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
141 
142   // Meta characters in the failure message should be properly escaped.
143   EXPECT_EQ(
144       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
145       *output());
146 }
147 
148 #endif  // GTEST_CAN_STREAM_RESULTS_
149 
150 // Provides access to otherwise private parts of the TestEventListeners class
151 // that are needed to test it.
152 class TestEventListenersAccessor {
153  public:
GetRepeater(TestEventListeners * listeners)154   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
155     return listeners->repeater();
156   }
157 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)158   static void SetDefaultResultPrinter(TestEventListeners* listeners,
159                                       TestEventListener* listener) {
160     listeners->SetDefaultResultPrinter(listener);
161   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)162   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
163                                      TestEventListener* listener) {
164     listeners->SetDefaultXmlGenerator(listener);
165   }
166 
EventForwardingEnabled(const TestEventListeners & listeners)167   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
168     return listeners.EventForwardingEnabled();
169   }
170 
SuppressEventForwarding(TestEventListeners * listeners)171   static void SuppressEventForwarding(TestEventListeners* listeners) {
172     listeners->SuppressEventForwarding();
173   }
174 };
175 
176 class UnitTestRecordPropertyTestHelper : public Test {
177  protected:
UnitTestRecordPropertyTestHelper()178   UnitTestRecordPropertyTestHelper() {}
179 
180   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)181   void UnitTestRecordProperty(const char* key, const std::string& value) {
182     unit_test_.RecordProperty(key, value);
183   }
184 
185   UnitTest unit_test_;
186 };
187 
188 }  // namespace internal
189 }  // namespace testing
190 
191 using testing::AssertionFailure;
192 using testing::AssertionResult;
193 using testing::AssertionSuccess;
194 using testing::DoubleLE;
195 using testing::EmptyTestEventListener;
196 using testing::Environment;
197 using testing::FloatLE;
198 using testing::GTEST_FLAG(also_run_disabled_tests);
199 using testing::GTEST_FLAG(break_on_failure);
200 using testing::GTEST_FLAG(catch_exceptions);
201 using testing::GTEST_FLAG(color);
202 using testing::GTEST_FLAG(death_test_use_fork);
203 using testing::GTEST_FLAG(filter);
204 using testing::GTEST_FLAG(list_tests);
205 using testing::GTEST_FLAG(output);
206 using testing::GTEST_FLAG(print_time);
207 using testing::GTEST_FLAG(random_seed);
208 using testing::GTEST_FLAG(repeat);
209 using testing::GTEST_FLAG(show_internal_stack_frames);
210 using testing::GTEST_FLAG(shuffle);
211 using testing::GTEST_FLAG(stack_trace_depth);
212 using testing::GTEST_FLAG(stream_result_to);
213 using testing::GTEST_FLAG(throw_on_failure);
214 using testing::IsNotSubstring;
215 using testing::IsSubstring;
216 using testing::Message;
217 using testing::ScopedFakeTestPartResultReporter;
218 using testing::StaticAssertTypeEq;
219 using testing::Test;
220 using testing::TestCase;
221 using testing::TestEventListeners;
222 using testing::TestInfo;
223 using testing::TestPartResult;
224 using testing::TestPartResultArray;
225 using testing::TestProperty;
226 using testing::TestResult;
227 using testing::TimeInMillis;
228 using testing::UnitTest;
229 using testing::internal::AddReference;
230 using testing::internal::AlwaysFalse;
231 using testing::internal::AlwaysTrue;
232 using testing::internal::AppendUserMessage;
233 using testing::internal::ArrayAwareFind;
234 using testing::internal::ArrayEq;
235 using testing::internal::CodePointToUtf8;
236 using testing::internal::CompileAssertTypesEqual;
237 using testing::internal::CopyArray;
238 using testing::internal::CountIf;
239 using testing::internal::EqFailure;
240 using testing::internal::FloatingPoint;
241 using testing::internal::ForEach;
242 using testing::internal::FormatEpochTimeInMillisAsIso8601;
243 using testing::internal::FormatTimeInMillisAsSeconds;
244 using testing::internal::GTestFlagSaver;
245 using testing::internal::GetCurrentOsStackTraceExceptTop;
246 using testing::internal::GetElementOr;
247 using testing::internal::GetNextRandomSeed;
248 using testing::internal::GetRandomSeedFromFlag;
249 using testing::internal::GetTestTypeId;
250 using testing::internal::GetTimeInMillis;
251 using testing::internal::GetTypeId;
252 using testing::internal::GetUnitTestImpl;
253 using testing::internal::Int32;
254 using testing::internal::Int32FromEnvOrDie;
255 using testing::internal::IsAProtocolMessage;
256 using testing::internal::IsContainer;
257 using testing::internal::IsContainerTest;
258 using testing::internal::IsNotContainer;
259 using testing::internal::NativeArray;
260 using testing::internal::OsStackTraceGetter;
261 using testing::internal::OsStackTraceGetterInterface;
262 using testing::internal::ParseInt32Flag;
263 using testing::internal::RelationToSourceCopy;
264 using testing::internal::RelationToSourceReference;
265 using testing::internal::RemoveConst;
266 using testing::internal::RemoveReference;
267 using testing::internal::ShouldRunTestOnShard;
268 using testing::internal::ShouldShard;
269 using testing::internal::ShouldUseColor;
270 using testing::internal::Shuffle;
271 using testing::internal::ShuffleRange;
272 using testing::internal::SkipPrefix;
273 using testing::internal::StreamableToString;
274 using testing::internal::String;
275 using testing::internal::TestEventListenersAccessor;
276 using testing::internal::TestResultAccessor;
277 using testing::internal::UInt32;
278 using testing::internal::UnitTestImpl;
279 using testing::internal::WideStringToUtf8;
280 using testing::internal::edit_distance::CalculateOptimalEdits;
281 using testing::internal::edit_distance::CreateUnifiedDiff;
282 using testing::internal::edit_distance::EditType;
283 using testing::internal::kMaxRandomSeed;
284 using testing::internal::kTestTypeIdInGoogleTest;
285 using testing::kMaxStackTraceDepth;
286 
287 #if GTEST_HAS_STREAM_REDIRECTION
288 using testing::internal::CaptureStdout;
289 using testing::internal::GetCapturedStdout;
290 #endif
291 
292 #if GTEST_IS_THREADSAFE
293 using testing::internal::ThreadWithParam;
294 #endif
295 
296 class TestingVector : public std::vector<int> {
297 };
298 
operator <<(::std::ostream & os,const TestingVector & vector)299 ::std::ostream& operator<<(::std::ostream& os,
300                            const TestingVector& vector) {
301   os << "{ ";
302   for (size_t i = 0; i < vector.size(); i++) {
303     os << vector[i] << " ";
304   }
305   os << "}";
306   return os;
307 }
308 
309 // This line tests that we can define tests in an unnamed namespace.
310 namespace {
311 
TEST(GetRandomSeedFromFlagTest,HandlesZero)312 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
313   const int seed = GetRandomSeedFromFlag(0);
314   EXPECT_LE(1, seed);
315   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
316 }
317 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)318 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
319   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
320   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
321   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
322   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
323             GetRandomSeedFromFlag(kMaxRandomSeed));
324 }
325 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)326 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
327   const int seed1 = GetRandomSeedFromFlag(-1);
328   EXPECT_LE(1, seed1);
329   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
330 
331   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
332   EXPECT_LE(1, seed2);
333   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
334 }
335 
TEST(GetNextRandomSeedTest,WorksForValidInput)336 TEST(GetNextRandomSeedTest, WorksForValidInput) {
337   EXPECT_EQ(2, GetNextRandomSeed(1));
338   EXPECT_EQ(3, GetNextRandomSeed(2));
339   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
340             GetNextRandomSeed(kMaxRandomSeed - 1));
341   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
342 
343   // We deliberately don't test GetNextRandomSeed() with invalid
344   // inputs, as that requires death tests, which are expensive.  This
345   // is fine as GetNextRandomSeed() is internal and has a
346   // straightforward definition.
347 }
348 
ClearCurrentTestPartResults()349 static void ClearCurrentTestPartResults() {
350   TestResultAccessor::ClearTestPartResults(
351       GetUnitTestImpl()->current_test_result());
352 }
353 
354 // Tests GetTypeId.
355 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)356 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
357   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
358   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
359 }
360 
361 class SubClassOfTest : public Test {};
362 class AnotherSubClassOfTest : public Test {};
363 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)364 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
365   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
366   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
367   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
368   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
369   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
370   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
371 }
372 
373 // Verifies that GetTestTypeId() returns the same value, no matter it
374 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)375 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
376   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
377 }
378 
379 // Tests CanonicalizeForStdLibVersioning.
380 
381 using ::testing::internal::CanonicalizeForStdLibVersioning;
382 
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)383 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
384   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
385   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
386   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
387   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
388   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
389   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
390 }
391 
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)392 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
393   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
394   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
395 
396   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
397   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
398 
399   EXPECT_EQ("std::bind",
400             CanonicalizeForStdLibVersioning("std::__google::bind"));
401   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
402 }
403 
404 // Tests FormatTimeInMillisAsSeconds().
405 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)406 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
407   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
408 }
409 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)410 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
411   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
412   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
413   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
414   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
415   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
416 }
417 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)418 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
419   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
420   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
421   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
422   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
423   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
424 }
425 
426 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
427 // for particular dates below was verified in Python using
428 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
429 
430 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
431 // have to set up a particular timezone to obtain predictable results.
432 class FormatEpochTimeInMillisAsIso8601Test : public Test {
433  public:
434   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
435   // 32 bits, even when 64-bit integer types are available.  We have to
436   // force the constants to have a 64-bit type here.
437   static const TimeInMillis kMillisPerSec = 1000;
438 
439  private:
SetUp()440   void SetUp() override {
441     saved_tz_ = nullptr;
442 
443     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */)
444     if (getenv("TZ"))
445       saved_tz_ = strdup(getenv("TZ"));
446     GTEST_DISABLE_MSC_DEPRECATED_POP_()
447 
448     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
449     // cannot use the local time zone because the function's output depends
450     // on the time zone.
451     SetTimeZone("UTC+00");
452   }
453 
TearDown()454   void TearDown() override {
455     SetTimeZone(saved_tz_);
456     free(const_cast<char*>(saved_tz_));
457     saved_tz_ = nullptr;
458   }
459 
SetTimeZone(const char * time_zone)460   static void SetTimeZone(const char* time_zone) {
461     // tzset() distinguishes between the TZ variable being present and empty
462     // and not being present, so we have to consider the case of time_zone
463     // being NULL.
464 #if _MSC_VER || GTEST_OS_WINDOWS_MINGW
465     // ...Unless it's MSVC, whose standard library's _putenv doesn't
466     // distinguish between an empty and a missing variable.
467     const std::string env_var =
468         std::string("TZ=") + (time_zone ? time_zone : "");
469     _putenv(env_var.c_str());
470     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
471     tzset();
472     GTEST_DISABLE_MSC_WARNINGS_POP_()
473 #else
474     if (time_zone) {
475       setenv(("TZ"), time_zone, 1);
476     } else {
477       unsetenv("TZ");
478     }
479     tzset();
480 #endif
481   }
482 
483   const char* saved_tz_;
484 };
485 
486 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
487 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)488 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
489   EXPECT_EQ("2011-10-31T18:52:42",
490             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
491 }
492 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,MillisecondsDoNotAffectResult)493 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
494   EXPECT_EQ(
495       "2011-10-31T18:52:42",
496       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
497 }
498 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)499 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
500   EXPECT_EQ("2011-09-03T05:07:02",
501             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
502 }
503 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)504 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
505   EXPECT_EQ("2011-09-28T17:08:22",
506             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
507 }
508 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)509 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
510   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
511 }
512 
513 # ifdef __BORLANDC__
514 // Silences warnings: "Condition is always true", "Unreachable code"
515 #  pragma option push -w-ccc -w-rch
516 # endif
517 
518 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
519 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)520 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
521   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
522   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
523   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
524   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
525   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
526   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
527 
528   const int* const p = nullptr;
529   EXPECT_EQ(0, p);     // NOLINT
530   ASSERT_EQ(0, p);     // NOLINT
531   EXPECT_EQ(NULL, p);  // NOLINT
532   ASSERT_EQ(NULL, p);  // NOLINT
533   EXPECT_EQ(nullptr, p);
534   ASSERT_EQ(nullptr, p);
535 }
536 
537 struct ConvertToAll {
538   template <typename T>
operator T__anon963337bb0111::ConvertToAll539   operator T() const {  // NOLINT
540     return T();
541   }
542 };
543 
544 struct ConvertToPointer {
545   template <class T>
operator T*__anon963337bb0111::ConvertToPointer546   operator T*() const {  // NOLINT
547     return nullptr;
548   }
549 };
550 
551 struct ConvertToAllButNoPointers {
552   template <typename T,
553             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anon963337bb0111::ConvertToAllButNoPointers554   operator T() const {  // NOLINT
555     return T();
556   }
557 };
558 
559 struct MyType {};
operator ==(MyType const &,MyType const &)560 inline bool operator==(MyType const&, MyType const&) { return true; }
561 
TEST(NullLiteralTest,ImplicitConversion)562 TEST(NullLiteralTest, ImplicitConversion) {
563   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
564 #if !defined(__GNUC__) || defined(__clang__)
565   // Disabled due to GCC bug gcc.gnu.org/PR89580
566   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
567 #endif
568   EXPECT_EQ(ConvertToAll{}, MyType{});
569   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
570 }
571 
572 #ifdef __clang__
573 #pragma clang diagnostic push
574 #if __has_warning("-Wzero-as-null-pointer-constant")
575 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
576 #endif
577 #endif
578 
TEST(NullLiteralTest,NoConversionNoWarning)579 TEST(NullLiteralTest, NoConversionNoWarning) {
580   // Test that gtests detection and handling of null pointer constants
581   // doesn't trigger a warning when '0' isn't actually used as null.
582   EXPECT_EQ(0, 0);
583   ASSERT_EQ(0, 0);
584 }
585 
586 #ifdef __clang__
587 #pragma clang diagnostic pop
588 #endif
589 
590 # ifdef __BORLANDC__
591 // Restores warnings after previous "#pragma option push" suppressed them.
592 #  pragma option pop
593 # endif
594 
595 //
596 // Tests CodePointToUtf8().
597 
598 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)599 TEST(CodePointToUtf8Test, CanEncodeNul) {
600   EXPECT_EQ("", CodePointToUtf8(L'\0'));
601 }
602 
603 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)604 TEST(CodePointToUtf8Test, CanEncodeAscii) {
605   EXPECT_EQ("a", CodePointToUtf8(L'a'));
606   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
607   EXPECT_EQ("&", CodePointToUtf8(L'&'));
608   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
609 }
610 
611 // Tests that Unicode code-points that have 8 to 11 bits are encoded
612 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)613 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
614   // 000 1101 0011 => 110-00011 10-010011
615   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
616 
617   // 101 0111 0110 => 110-10101 10-110110
618   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
619   // in wide strings and wide chars. In order to accommodate them, we have to
620   // introduce such character constants as integers.
621   EXPECT_EQ("\xD5\xB6",
622             CodePointToUtf8(static_cast<wchar_t>(0x576)));
623 }
624 
625 // Tests that Unicode code-points that have 12 to 16 bits are encoded
626 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)627 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
628   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
629   EXPECT_EQ("\xE0\xA3\x93",
630             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
631 
632   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
633   EXPECT_EQ("\xEC\x9D\x8D",
634             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
635 }
636 
637 #if !GTEST_WIDE_STRING_USES_UTF16_
638 // Tests in this group require a wchar_t to hold > 16 bits, and thus
639 // are skipped on Windows, and Cygwin, where a wchar_t is
640 // 16-bit wide. This code may not compile on those systems.
641 
642 // Tests that Unicode code-points that have 17 to 21 bits are encoded
643 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)644 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
645   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
646   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
647 
648   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
649   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
650 
651   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
652   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
653 }
654 
655 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)656 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
657   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
658 }
659 
660 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
661 
662 // Tests WideStringToUtf8().
663 
664 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)665 TEST(WideStringToUtf8Test, CanEncodeNul) {
666   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
667   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
668 }
669 
670 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)671 TEST(WideStringToUtf8Test, CanEncodeAscii) {
672   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
673   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
674   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
675   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
676 }
677 
678 // Tests that Unicode code-points that have 8 to 11 bits are encoded
679 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)680 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
681   // 000 1101 0011 => 110-00011 10-010011
682   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
683   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
684 
685   // 101 0111 0110 => 110-10101 10-110110
686   const wchar_t s[] = { 0x576, '\0' };
687   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
688   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
689 }
690 
691 // Tests that Unicode code-points that have 12 to 16 bits are encoded
692 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)693 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
694   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
695   const wchar_t s1[] = { 0x8D3, '\0' };
696   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
697   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
698 
699   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
700   const wchar_t s2[] = { 0xC74D, '\0' };
701   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
702   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
703 }
704 
705 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)706 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
707   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
708 }
709 
710 // Tests that the conversion stops when the function reaches the limit
711 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)712 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
713   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
714 }
715 
716 #if !GTEST_WIDE_STRING_USES_UTF16_
717 // Tests that Unicode code-points that have 17 to 21 bits are encoded
718 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
719 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)720 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
721   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
722   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
723   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
724 
725   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
726   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
727   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
728 }
729 
730 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)731 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
732   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
733                WideStringToUtf8(L"\xABCDFF", -1).c_str());
734 }
735 #else  // !GTEST_WIDE_STRING_USES_UTF16_
736 // Tests that surrogate pairs are encoded correctly on the systems using
737 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)738 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
739   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
740   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
741 }
742 
743 // Tests that encoding an invalid UTF-16 surrogate pair
744 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)745 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
746   // Leading surrogate is at the end of the string.
747   const wchar_t s1[] = { 0xD800, '\0' };
748   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
749   // Leading surrogate is not followed by the trailing surrogate.
750   const wchar_t s2[] = { 0xD800, 'M', '\0' };
751   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
752   // Trailing surrogate appearas without a leading surrogate.
753   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
754   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
755 }
756 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
757 
758 // Tests that codepoint concatenation works correctly.
759 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)760 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
761   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
762   EXPECT_STREQ(
763       "\xF4\x88\x98\xB4"
764           "\xEC\x9D\x8D"
765           "\n"
766           "\xD5\xB6"
767           "\xE0\xA3\x93"
768           "\xF4\x88\x98\xB4",
769       WideStringToUtf8(s, -1).c_str());
770 }
771 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)772 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
773   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
774   EXPECT_STREQ(
775       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
776       WideStringToUtf8(s, -1).c_str());
777 }
778 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
779 
780 // Tests the Random class.
781 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)782 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
783   testing::internal::Random random(42);
784   EXPECT_DEATH_IF_SUPPORTED(
785       random.Generate(0),
786       "Cannot generate a number in the range \\[0, 0\\)");
787   EXPECT_DEATH_IF_SUPPORTED(
788       random.Generate(testing::internal::Random::kMaxRange + 1),
789       "Generation of a number in \\[0, 2147483649\\) was requested, "
790       "but this can only generate numbers in \\[0, 2147483648\\)");
791 }
792 
TEST(RandomTest,GeneratesNumbersWithinRange)793 TEST(RandomTest, GeneratesNumbersWithinRange) {
794   const UInt32 kRange = 10000;
795   testing::internal::Random random(12345);
796   for (int i = 0; i < 10; i++) {
797     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
798   }
799 
800   testing::internal::Random random2(testing::internal::Random::kMaxRange);
801   for (int i = 0; i < 10; i++) {
802     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
803   }
804 }
805 
TEST(RandomTest,RepeatsWhenReseeded)806 TEST(RandomTest, RepeatsWhenReseeded) {
807   const int kSeed = 123;
808   const int kArraySize = 10;
809   const UInt32 kRange = 10000;
810   UInt32 values[kArraySize];
811 
812   testing::internal::Random random(kSeed);
813   for (int i = 0; i < kArraySize; i++) {
814     values[i] = random.Generate(kRange);
815   }
816 
817   random.Reseed(kSeed);
818   for (int i = 0; i < kArraySize; i++) {
819     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
820   }
821 }
822 
823 // Tests STL container utilities.
824 
825 // Tests CountIf().
826 
IsPositive(int n)827 static bool IsPositive(int n) { return n > 0; }
828 
TEST(ContainerUtilityTest,CountIf)829 TEST(ContainerUtilityTest, CountIf) {
830   std::vector<int> v;
831   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
832 
833   v.push_back(-1);
834   v.push_back(0);
835   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
836 
837   v.push_back(2);
838   v.push_back(-10);
839   v.push_back(10);
840   EXPECT_EQ(2, CountIf(v, IsPositive));
841 }
842 
843 // Tests ForEach().
844 
845 static int g_sum = 0;
Accumulate(int n)846 static void Accumulate(int n) { g_sum += n; }
847 
TEST(ContainerUtilityTest,ForEach)848 TEST(ContainerUtilityTest, ForEach) {
849   std::vector<int> v;
850   g_sum = 0;
851   ForEach(v, Accumulate);
852   EXPECT_EQ(0, g_sum);  // Works for an empty container;
853 
854   g_sum = 0;
855   v.push_back(1);
856   ForEach(v, Accumulate);
857   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
858 
859   g_sum = 0;
860   v.push_back(20);
861   v.push_back(300);
862   ForEach(v, Accumulate);
863   EXPECT_EQ(321, g_sum);
864 }
865 
866 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)867 TEST(ContainerUtilityTest, GetElementOr) {
868   std::vector<char> a;
869   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
870 
871   a.push_back('a');
872   a.push_back('b');
873   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
874   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
875   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
876   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
877 }
878 
TEST(ContainerUtilityDeathTest,ShuffleRange)879 TEST(ContainerUtilityDeathTest, ShuffleRange) {
880   std::vector<int> a;
881   a.push_back(0);
882   a.push_back(1);
883   a.push_back(2);
884   testing::internal::Random random(1);
885 
886   EXPECT_DEATH_IF_SUPPORTED(
887       ShuffleRange(&random, -1, 1, &a),
888       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
889   EXPECT_DEATH_IF_SUPPORTED(
890       ShuffleRange(&random, 4, 4, &a),
891       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
892   EXPECT_DEATH_IF_SUPPORTED(
893       ShuffleRange(&random, 3, 2, &a),
894       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
895   EXPECT_DEATH_IF_SUPPORTED(
896       ShuffleRange(&random, 3, 4, &a),
897       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
898 }
899 
900 class VectorShuffleTest : public Test {
901  protected:
902   static const int kVectorSize = 20;
903 
VectorShuffleTest()904   VectorShuffleTest() : random_(1) {
905     for (int i = 0; i < kVectorSize; i++) {
906       vector_.push_back(i);
907     }
908   }
909 
VectorIsCorrupt(const TestingVector & vector)910   static bool VectorIsCorrupt(const TestingVector& vector) {
911     if (kVectorSize != static_cast<int>(vector.size())) {
912       return true;
913     }
914 
915     bool found_in_vector[kVectorSize] = { false };
916     for (size_t i = 0; i < vector.size(); i++) {
917       const int e = vector[i];
918       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
919         return true;
920       }
921       found_in_vector[e] = true;
922     }
923 
924     // Vector size is correct, elements' range is correct, no
925     // duplicate elements.  Therefore no corruption has occurred.
926     return false;
927   }
928 
VectorIsNotCorrupt(const TestingVector & vector)929   static bool VectorIsNotCorrupt(const TestingVector& vector) {
930     return !VectorIsCorrupt(vector);
931   }
932 
RangeIsShuffled(const TestingVector & vector,int begin,int end)933   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
934     for (int i = begin; i < end; i++) {
935       if (i != vector[i]) {
936         return true;
937       }
938     }
939     return false;
940   }
941 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)942   static bool RangeIsUnshuffled(
943       const TestingVector& vector, int begin, int end) {
944     return !RangeIsShuffled(vector, begin, end);
945   }
946 
VectorIsShuffled(const TestingVector & vector)947   static bool VectorIsShuffled(const TestingVector& vector) {
948     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
949   }
950 
VectorIsUnshuffled(const TestingVector & vector)951   static bool VectorIsUnshuffled(const TestingVector& vector) {
952     return !VectorIsShuffled(vector);
953   }
954 
955   testing::internal::Random random_;
956   TestingVector vector_;
957 };  // class VectorShuffleTest
958 
959 const int VectorShuffleTest::kVectorSize;
960 
TEST_F(VectorShuffleTest,HandlesEmptyRange)961 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
962   // Tests an empty range at the beginning...
963   ShuffleRange(&random_, 0, 0, &vector_);
964   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
965   ASSERT_PRED1(VectorIsUnshuffled, vector_);
966 
967   // ...in the middle...
968   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
969   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
970   ASSERT_PRED1(VectorIsUnshuffled, vector_);
971 
972   // ...at the end...
973   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
974   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975   ASSERT_PRED1(VectorIsUnshuffled, vector_);
976 
977   // ...and past the end.
978   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
979   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
980   ASSERT_PRED1(VectorIsUnshuffled, vector_);
981 }
982 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)983 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
984   // Tests a size one range at the beginning...
985   ShuffleRange(&random_, 0, 1, &vector_);
986   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
987   ASSERT_PRED1(VectorIsUnshuffled, vector_);
988 
989   // ...in the middle...
990   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
991   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
992   ASSERT_PRED1(VectorIsUnshuffled, vector_);
993 
994   // ...and at the end.
995   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
996   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
997   ASSERT_PRED1(VectorIsUnshuffled, vector_);
998 }
999 
1000 // Because we use our own random number generator and a fixed seed,
1001 // we can guarantee that the following "random" tests will succeed.
1002 
TEST_F(VectorShuffleTest,ShufflesEntireVector)1003 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1004   Shuffle(&random_, &vector_);
1005   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1006   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1007 
1008   // Tests the first and last elements in particular to ensure that
1009   // there are no off-by-one problems in our shuffle algorithm.
1010   EXPECT_NE(0, vector_[0]);
1011   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
1012 }
1013 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1014 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1015   const int kRangeSize = kVectorSize/2;
1016 
1017   ShuffleRange(&random_, 0, kRangeSize, &vector_);
1018 
1019   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1020   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1021   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
1022 }
1023 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1024 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1025   const int kRangeSize = kVectorSize / 2;
1026   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1027 
1028   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1029   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1030   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
1031 }
1032 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1033 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1034   int kRangeSize = kVectorSize/3;
1035   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
1036 
1037   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1038   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1039   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
1040   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
1041 }
1042 
TEST_F(VectorShuffleTest,ShufflesRepeatably)1043 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1044   TestingVector vector2;
1045   for (int i = 0; i < kVectorSize; i++) {
1046     vector2.push_back(i);
1047   }
1048 
1049   random_.Reseed(1234);
1050   Shuffle(&random_, &vector_);
1051   random_.Reseed(1234);
1052   Shuffle(&random_, &vector2);
1053 
1054   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1055   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1056 
1057   for (int i = 0; i < kVectorSize; i++) {
1058     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1059   }
1060 }
1061 
1062 // Tests the size of the AssertHelper class.
1063 
TEST(AssertHelperTest,AssertHelperIsSmall)1064 TEST(AssertHelperTest, AssertHelperIsSmall) {
1065   // To avoid breaking clients that use lots of assertions in one
1066   // function, we cannot grow the size of AssertHelper.
1067   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1068 }
1069 
1070 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1071 TEST(StringTest, EndsWithCaseInsensitive) {
1072   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1073   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1074   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1075   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1076 
1077   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1078   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1079   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1080 }
1081 
1082 // C++Builder's preprocessor is buggy; it fails to expand macros that
1083 // appear in macro parameters after wide char literals.  Provide an alias
1084 // for NULL as a workaround.
1085 static const wchar_t* const kNull = nullptr;
1086 
1087 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1088 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1089   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1090   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1091   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1092   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1093   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1094   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1095   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1096   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1097 }
1098 
1099 #if GTEST_OS_WINDOWS
1100 
1101 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1102 TEST(StringTest, ShowWideCString) {
1103   EXPECT_STREQ("(null)",
1104                String::ShowWideCString(NULL).c_str());
1105   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1106   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1107 }
1108 
1109 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1110 TEST(StringTest, AnsiAndUtf16Null) {
1111   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1112   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1113 }
1114 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1115 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1116   const char* ansi = String::Utf16ToAnsi(L"str");
1117   EXPECT_STREQ("str", ansi);
1118   delete [] ansi;
1119   const WCHAR* utf16 = String::AnsiToUtf16("str");
1120   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1121   delete [] utf16;
1122 }
1123 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1124 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1125   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1126   EXPECT_STREQ(".:\\ \"*?", ansi);
1127   delete [] ansi;
1128   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1129   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1130   delete [] utf16;
1131 }
1132 # endif  // GTEST_OS_WINDOWS_MOBILE
1133 
1134 #endif  // GTEST_OS_WINDOWS
1135 
1136 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1137 TEST(TestPropertyTest, StringValue) {
1138   TestProperty property("key", "1");
1139   EXPECT_STREQ("key", property.key());
1140   EXPECT_STREQ("1", property.value());
1141 }
1142 
1143 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1144 TEST(TestPropertyTest, ReplaceStringValue) {
1145   TestProperty property("key", "1");
1146   EXPECT_STREQ("1", property.value());
1147   property.SetValue("2");
1148   EXPECT_STREQ("2", property.value());
1149 }
1150 
1151 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1152 // functions (i.e. their definitions cannot be inlined at the call
1153 // sites), or C++Builder won't compile the code.
AddFatalFailure()1154 static void AddFatalFailure() {
1155   FAIL() << "Expected fatal failure.";
1156 }
1157 
AddNonfatalFailure()1158 static void AddNonfatalFailure() {
1159   ADD_FAILURE() << "Expected non-fatal failure.";
1160 }
1161 
1162 class ScopedFakeTestPartResultReporterTest : public Test {
1163  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1164   enum FailureMode {
1165     FATAL_FAILURE,
1166     NONFATAL_FAILURE
1167   };
AddFailure(FailureMode failure)1168   static void AddFailure(FailureMode failure) {
1169     if (failure == FATAL_FAILURE) {
1170       AddFatalFailure();
1171     } else {
1172       AddNonfatalFailure();
1173     }
1174   }
1175 };
1176 
1177 // Tests that ScopedFakeTestPartResultReporter intercepts test
1178 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1179 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1180   TestPartResultArray results;
1181   {
1182     ScopedFakeTestPartResultReporter reporter(
1183         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1184         &results);
1185     AddFailure(NONFATAL_FAILURE);
1186     AddFailure(FATAL_FAILURE);
1187   }
1188 
1189   EXPECT_EQ(2, results.size());
1190   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1191   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1192 }
1193 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1194 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1195   TestPartResultArray results;
1196   {
1197     // Tests, that the deprecated constructor still works.
1198     ScopedFakeTestPartResultReporter reporter(&results);
1199     AddFailure(NONFATAL_FAILURE);
1200   }
1201   EXPECT_EQ(1, results.size());
1202 }
1203 
1204 #if GTEST_IS_THREADSAFE
1205 
1206 class ScopedFakeTestPartResultReporterWithThreadsTest
1207   : public ScopedFakeTestPartResultReporterTest {
1208  protected:
AddFailureInOtherThread(FailureMode failure)1209   static void AddFailureInOtherThread(FailureMode failure) {
1210     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1211     thread.Join();
1212   }
1213 };
1214 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1215 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1216        InterceptsTestFailuresInAllThreads) {
1217   TestPartResultArray results;
1218   {
1219     ScopedFakeTestPartResultReporter reporter(
1220         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1221     AddFailure(NONFATAL_FAILURE);
1222     AddFailure(FATAL_FAILURE);
1223     AddFailureInOtherThread(NONFATAL_FAILURE);
1224     AddFailureInOtherThread(FATAL_FAILURE);
1225   }
1226 
1227   EXPECT_EQ(4, results.size());
1228   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1229   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1230   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1231   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1232 }
1233 
1234 #endif  // GTEST_IS_THREADSAFE
1235 
1236 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1237 // work even if the failure is generated in a called function rather than
1238 // the current context.
1239 
1240 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1241 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1242 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1243   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1244 }
1245 
1246 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest,AcceptsStringObject)1247 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1248   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1249 }
1250 #endif
1251 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1252 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1253   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1254                        ::std::string("Expected fatal failure."));
1255 }
1256 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1257 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1258   // We have another test below to verify that the macro catches fatal
1259   // failures generated on another thread.
1260   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1261                                       "Expected fatal failure.");
1262 }
1263 
1264 #ifdef __BORLANDC__
1265 // Silences warnings: "Condition is always true"
1266 # pragma option push -w-ccc
1267 #endif
1268 
1269 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1270 // function even when the statement in it contains ASSERT_*.
1271 
NonVoidFunction()1272 int NonVoidFunction() {
1273   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1274   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1275   return 0;
1276 }
1277 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1278 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1279   NonVoidFunction();
1280 }
1281 
1282 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1283 // current function even though 'statement' generates a fatal failure.
1284 
DoesNotAbortHelper(bool * aborted)1285 void DoesNotAbortHelper(bool* aborted) {
1286   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1287   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1288 
1289   *aborted = false;
1290 }
1291 
1292 #ifdef __BORLANDC__
1293 // Restores warnings after previous "#pragma option push" suppressed them.
1294 # pragma option pop
1295 #endif
1296 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1297 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1298   bool aborted = true;
1299   DoesNotAbortHelper(&aborted);
1300   EXPECT_FALSE(aborted);
1301 }
1302 
1303 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1304 // statement that contains a macro which expands to code containing an
1305 // unprotected comma.
1306 
1307 static int global_var = 0;
1308 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1309 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1310 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1311 #ifndef __BORLANDC__
1312   // ICE's in C++Builder.
1313   EXPECT_FATAL_FAILURE({
1314     GTEST_USE_UNPROTECTED_COMMA_;
1315     AddFatalFailure();
1316   }, "");
1317 #endif
1318 
1319   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1320     GTEST_USE_UNPROTECTED_COMMA_;
1321     AddFatalFailure();
1322   }, "");
1323 }
1324 
1325 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1326 
1327 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1328 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1329 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1330   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1331                           "Expected non-fatal failure.");
1332 }
1333 
1334 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest,AcceptsStringObject)1335 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1336   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1337                           ::string("Expected non-fatal failure."));
1338 }
1339 #endif
1340 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1341 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1342   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1343                           ::std::string("Expected non-fatal failure."));
1344 }
1345 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1346 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1347   // We have another test below to verify that the macro catches
1348   // non-fatal failures generated on another thread.
1349   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1350                                          "Expected non-fatal failure.");
1351 }
1352 
1353 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1354 // statement that contains a macro which expands to code containing an
1355 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1356 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1357   EXPECT_NONFATAL_FAILURE({
1358     GTEST_USE_UNPROTECTED_COMMA_;
1359     AddNonfatalFailure();
1360   }, "");
1361 
1362   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1363     GTEST_USE_UNPROTECTED_COMMA_;
1364     AddNonfatalFailure();
1365   }, "");
1366 }
1367 
1368 #if GTEST_IS_THREADSAFE
1369 
1370 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1371     ExpectFailureWithThreadsTest;
1372 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1373 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1374   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1375                                       "Expected fatal failure.");
1376 }
1377 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1378 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1379   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1380       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1381 }
1382 
1383 #endif  // GTEST_IS_THREADSAFE
1384 
1385 // Tests the TestProperty class.
1386 
TEST(TestPropertyTest,ConstructorWorks)1387 TEST(TestPropertyTest, ConstructorWorks) {
1388   const TestProperty property("key", "value");
1389   EXPECT_STREQ("key", property.key());
1390   EXPECT_STREQ("value", property.value());
1391 }
1392 
TEST(TestPropertyTest,SetValue)1393 TEST(TestPropertyTest, SetValue) {
1394   TestProperty property("key", "value_1");
1395   EXPECT_STREQ("key", property.key());
1396   property.SetValue("value_2");
1397   EXPECT_STREQ("key", property.key());
1398   EXPECT_STREQ("value_2", property.value());
1399 }
1400 
1401 // Tests the TestResult class
1402 
1403 // The test fixture for testing TestResult.
1404 class TestResultTest : public Test {
1405  protected:
1406   typedef std::vector<TestPartResult> TPRVector;
1407 
1408   // We make use of 2 TestPartResult objects,
1409   TestPartResult * pr1, * pr2;
1410 
1411   // ... and 3 TestResult objects.
1412   TestResult * r0, * r1, * r2;
1413 
SetUp()1414   void SetUp() override {
1415     // pr1 is for success.
1416     pr1 = new TestPartResult(TestPartResult::kSuccess,
1417                              "foo/bar.cc",
1418                              10,
1419                              "Success!");
1420 
1421     // pr2 is for fatal failure.
1422     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1423                              "foo/bar.cc",
1424                              -1,  // This line number means "unknown"
1425                              "Failure!");
1426 
1427     // Creates the TestResult objects.
1428     r0 = new TestResult();
1429     r1 = new TestResult();
1430     r2 = new TestResult();
1431 
1432     // In order to test TestResult, we need to modify its internal
1433     // state, in particular the TestPartResult vector it holds.
1434     // test_part_results() returns a const reference to this vector.
1435     // We cast it to a non-const object s.t. it can be modified
1436     TPRVector* results1 = const_cast<TPRVector*>(
1437         &TestResultAccessor::test_part_results(*r1));
1438     TPRVector* results2 = const_cast<TPRVector*>(
1439         &TestResultAccessor::test_part_results(*r2));
1440 
1441     // r0 is an empty TestResult.
1442 
1443     // r1 contains a single SUCCESS TestPartResult.
1444     results1->push_back(*pr1);
1445 
1446     // r2 contains a SUCCESS, and a FAILURE.
1447     results2->push_back(*pr1);
1448     results2->push_back(*pr2);
1449   }
1450 
TearDown()1451   void TearDown() override {
1452     delete pr1;
1453     delete pr2;
1454 
1455     delete r0;
1456     delete r1;
1457     delete r2;
1458   }
1459 
1460   // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1461   static void CompareTestPartResult(const TestPartResult& expected,
1462                                     const TestPartResult& actual) {
1463     EXPECT_EQ(expected.type(), actual.type());
1464     EXPECT_STREQ(expected.file_name(), actual.file_name());
1465     EXPECT_EQ(expected.line_number(), actual.line_number());
1466     EXPECT_STREQ(expected.summary(), actual.summary());
1467     EXPECT_STREQ(expected.message(), actual.message());
1468     EXPECT_EQ(expected.passed(), actual.passed());
1469     EXPECT_EQ(expected.failed(), actual.failed());
1470     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1471     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1472   }
1473 };
1474 
1475 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1476 TEST_F(TestResultTest, total_part_count) {
1477   ASSERT_EQ(0, r0->total_part_count());
1478   ASSERT_EQ(1, r1->total_part_count());
1479   ASSERT_EQ(2, r2->total_part_count());
1480 }
1481 
1482 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1483 TEST_F(TestResultTest, Passed) {
1484   ASSERT_TRUE(r0->Passed());
1485   ASSERT_TRUE(r1->Passed());
1486   ASSERT_FALSE(r2->Passed());
1487 }
1488 
1489 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1490 TEST_F(TestResultTest, Failed) {
1491   ASSERT_FALSE(r0->Failed());
1492   ASSERT_FALSE(r1->Failed());
1493   ASSERT_TRUE(r2->Failed());
1494 }
1495 
1496 // Tests TestResult::GetTestPartResult().
1497 
1498 typedef TestResultTest TestResultDeathTest;
1499 
TEST_F(TestResultDeathTest,GetTestPartResult)1500 TEST_F(TestResultDeathTest, GetTestPartResult) {
1501   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1502   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1503   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1504   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1505 }
1506 
1507 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1508 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1509   TestResult test_result;
1510   ASSERT_EQ(0, test_result.test_property_count());
1511 }
1512 
1513 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1514 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1515   TestResult test_result;
1516   TestProperty property("key_1", "1");
1517   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1518   ASSERT_EQ(1, test_result.test_property_count());
1519   const TestProperty& actual_property = test_result.GetTestProperty(0);
1520   EXPECT_STREQ("key_1", actual_property.key());
1521   EXPECT_STREQ("1", actual_property.value());
1522 }
1523 
1524 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1525 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1526   TestResult test_result;
1527   TestProperty property_1("key_1", "1");
1528   TestProperty property_2("key_2", "2");
1529   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1530   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1531   ASSERT_EQ(2, test_result.test_property_count());
1532   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1533   EXPECT_STREQ("key_1", actual_property_1.key());
1534   EXPECT_STREQ("1", actual_property_1.value());
1535 
1536   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1537   EXPECT_STREQ("key_2", actual_property_2.key());
1538   EXPECT_STREQ("2", actual_property_2.value());
1539 }
1540 
1541 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1542 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1543   TestResult test_result;
1544   TestProperty property_1_1("key_1", "1");
1545   TestProperty property_2_1("key_2", "2");
1546   TestProperty property_1_2("key_1", "12");
1547   TestProperty property_2_2("key_2", "22");
1548   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1549   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1550   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1551   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1552 
1553   ASSERT_EQ(2, test_result.test_property_count());
1554   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1555   EXPECT_STREQ("key_1", actual_property_1.key());
1556   EXPECT_STREQ("12", actual_property_1.value());
1557 
1558   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1559   EXPECT_STREQ("key_2", actual_property_2.key());
1560   EXPECT_STREQ("22", actual_property_2.value());
1561 }
1562 
1563 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1564 TEST(TestResultPropertyTest, GetTestProperty) {
1565   TestResult test_result;
1566   TestProperty property_1("key_1", "1");
1567   TestProperty property_2("key_2", "2");
1568   TestProperty property_3("key_3", "3");
1569   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1570   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1571   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1572 
1573   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1574   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1575   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1576 
1577   EXPECT_STREQ("key_1", fetched_property_1.key());
1578   EXPECT_STREQ("1", fetched_property_1.value());
1579 
1580   EXPECT_STREQ("key_2", fetched_property_2.key());
1581   EXPECT_STREQ("2", fetched_property_2.value());
1582 
1583   EXPECT_STREQ("key_3", fetched_property_3.key());
1584   EXPECT_STREQ("3", fetched_property_3.value());
1585 
1586   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1587   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1588 }
1589 
1590 // Tests the Test class.
1591 //
1592 // It's difficult to test every public method of this class (we are
1593 // already stretching the limit of Google Test by using it to test itself!).
1594 // Fortunately, we don't have to do that, as we are already testing
1595 // the functionalities of the Test class extensively by using Google Test
1596 // alone.
1597 //
1598 // Therefore, this section only contains one test.
1599 
1600 // Tests that GTestFlagSaver works on Windows and Mac.
1601 
1602 class GTestFlagSaverTest : public Test {
1603  protected:
1604   // Saves the Google Test flags such that we can restore them later, and
1605   // then sets them to their default values.  This will be called
1606   // before the first test in this test case is run.
SetUpTestSuite()1607   static void SetUpTestSuite() {
1608     saver_ = new GTestFlagSaver;
1609 
1610     GTEST_FLAG(also_run_disabled_tests) = false;
1611     GTEST_FLAG(break_on_failure) = false;
1612     GTEST_FLAG(catch_exceptions) = false;
1613     GTEST_FLAG(death_test_use_fork) = false;
1614     GTEST_FLAG(color) = "auto";
1615     GTEST_FLAG(filter) = "";
1616     GTEST_FLAG(list_tests) = false;
1617     GTEST_FLAG(output) = "";
1618     GTEST_FLAG(print_time) = true;
1619     GTEST_FLAG(random_seed) = 0;
1620     GTEST_FLAG(repeat) = 1;
1621     GTEST_FLAG(shuffle) = false;
1622     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1623     GTEST_FLAG(stream_result_to) = "";
1624     GTEST_FLAG(throw_on_failure) = false;
1625   }
1626 
1627   // Restores the Google Test flags that the tests have modified.  This will
1628   // be called after the last test in this test case is run.
TearDownTestSuite()1629   static void TearDownTestSuite() {
1630     delete saver_;
1631     saver_ = nullptr;
1632   }
1633 
1634   // Verifies that the Google Test flags have their default values, and then
1635   // modifies each of them.
VerifyAndModifyFlags()1636   void VerifyAndModifyFlags() {
1637     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1638     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1639     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1640     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1641     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1642     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1643     EXPECT_FALSE(GTEST_FLAG(list_tests));
1644     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1645     EXPECT_TRUE(GTEST_FLAG(print_time));
1646     EXPECT_EQ(0, GTEST_FLAG(random_seed));
1647     EXPECT_EQ(1, GTEST_FLAG(repeat));
1648     EXPECT_FALSE(GTEST_FLAG(shuffle));
1649     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1650     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1651     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1652 
1653     GTEST_FLAG(also_run_disabled_tests) = true;
1654     GTEST_FLAG(break_on_failure) = true;
1655     GTEST_FLAG(catch_exceptions) = true;
1656     GTEST_FLAG(color) = "no";
1657     GTEST_FLAG(death_test_use_fork) = true;
1658     GTEST_FLAG(filter) = "abc";
1659     GTEST_FLAG(list_tests) = true;
1660     GTEST_FLAG(output) = "xml:foo.xml";
1661     GTEST_FLAG(print_time) = false;
1662     GTEST_FLAG(random_seed) = 1;
1663     GTEST_FLAG(repeat) = 100;
1664     GTEST_FLAG(shuffle) = true;
1665     GTEST_FLAG(stack_trace_depth) = 1;
1666     GTEST_FLAG(stream_result_to) = "localhost:1234";
1667     GTEST_FLAG(throw_on_failure) = true;
1668   }
1669 
1670  private:
1671   // For saving Google Test flags during this test case.
1672   static GTestFlagSaver* saver_;
1673 };
1674 
1675 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1676 
1677 // Google Test doesn't guarantee the order of tests.  The following two
1678 // tests are designed to work regardless of their order.
1679 
1680 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1681 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1682   VerifyAndModifyFlags();
1683 }
1684 
1685 // Verifies that the Google Test flags in the body of the previous test were
1686 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1687 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1688   VerifyAndModifyFlags();
1689 }
1690 
1691 // Sets an environment variable with the given name to the given
1692 // value.  If the value argument is "", unsets the environment
1693 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1694 static void SetEnv(const char* name, const char* value) {
1695 #if GTEST_OS_WINDOWS_MOBILE
1696   // Environment variables are not supported on Windows CE.
1697   return;
1698 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1699   // C++Builder's putenv only stores a pointer to its parameter; we have to
1700   // ensure that the string remains valid as long as it might be needed.
1701   // We use an std::map to do so.
1702   static std::map<std::string, std::string*> added_env;
1703 
1704   // Because putenv stores a pointer to the string buffer, we can't delete the
1705   // previous string (if present) until after it's replaced.
1706   std::string *prev_env = NULL;
1707   if (added_env.find(name) != added_env.end()) {
1708     prev_env = added_env[name];
1709   }
1710   added_env[name] = new std::string(
1711       (Message() << name << "=" << value).GetString());
1712 
1713   // The standard signature of putenv accepts a 'char*' argument. Other
1714   // implementations, like C++Builder's, accept a 'const char*'.
1715   // We cast away the 'const' since that would work for both variants.
1716   putenv(const_cast<char*>(added_env[name]->c_str()));
1717   delete prev_env;
1718 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1719   _putenv((Message() << name << "=" << value).GetString().c_str());
1720 #else
1721   if (*value == '\0') {
1722     unsetenv(name);
1723   } else {
1724     setenv(name, value, 1);
1725   }
1726 #endif  // GTEST_OS_WINDOWS_MOBILE
1727 }
1728 
1729 #if !GTEST_OS_WINDOWS_MOBILE
1730 // Environment variables are not supported on Windows CE.
1731 
1732 using testing::internal::Int32FromGTestEnv;
1733 
1734 // Tests Int32FromGTestEnv().
1735 
1736 // Tests that Int32FromGTestEnv() returns the default value when the
1737 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1738 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1739   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1740   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1741 }
1742 
1743 # if !defined(GTEST_GET_INT32_FROM_ENV_)
1744 
1745 // Tests that Int32FromGTestEnv() returns the default value when the
1746 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1747 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1748   printf("(expecting 2 warnings)\n");
1749 
1750   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1751   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1752 
1753   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1754   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1755 }
1756 
1757 // Tests that Int32FromGTestEnv() returns the default value when the
1758 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1759 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1760   printf("(expecting 2 warnings)\n");
1761 
1762   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1763   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1764 
1765   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1766   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1767 }
1768 
1769 # endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1770 
1771 // Tests that Int32FromGTestEnv() parses and returns the value of the
1772 // environment variable when it represents a valid decimal integer in
1773 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1774 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1775   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1776   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1777 
1778   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1779   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1780 }
1781 #endif  // !GTEST_OS_WINDOWS_MOBILE
1782 
1783 // Tests ParseInt32Flag().
1784 
1785 // Tests that ParseInt32Flag() returns false and doesn't change the
1786 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1787 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1788   Int32 value = 123;
1789   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1790   EXPECT_EQ(123, value);
1791 
1792   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1793   EXPECT_EQ(123, value);
1794 }
1795 
1796 // Tests that ParseInt32Flag() returns false and doesn't change the
1797 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1798 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1799   printf("(expecting 2 warnings)\n");
1800 
1801   Int32 value = 123;
1802   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1803   EXPECT_EQ(123, value);
1804 
1805   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1806   EXPECT_EQ(123, value);
1807 }
1808 
1809 // Tests that ParseInt32Flag() returns false and doesn't change the
1810 // output value when the flag does not represent a valid decimal
1811 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1812 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1813   printf("(expecting 2 warnings)\n");
1814 
1815   Int32 value = 123;
1816   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1817   EXPECT_EQ(123, value);
1818 
1819   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1820   EXPECT_EQ(123, value);
1821 }
1822 
1823 // Tests that ParseInt32Flag() parses the value of the flag and
1824 // returns true when the flag represents a valid decimal integer in
1825 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1826 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1827   Int32 value = 123;
1828   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1829   EXPECT_EQ(456, value);
1830 
1831   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1832                              "abc", &value));
1833   EXPECT_EQ(-789, value);
1834 }
1835 
1836 // Tests that Int32FromEnvOrDie() parses the value of the var or
1837 // returns the correct default.
1838 // Environment variables are not supported on Windows CE.
1839 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1840 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1841   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1842   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1843   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1844   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1845   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1846 }
1847 #endif  // !GTEST_OS_WINDOWS_MOBILE
1848 
1849 // Tests that Int32FromEnvOrDie() aborts with an error message
1850 // if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1851 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1852   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1853   EXPECT_DEATH_IF_SUPPORTED(
1854       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1855       ".*");
1856 }
1857 
1858 // Tests that Int32FromEnvOrDie() aborts with an error message
1859 // if the variable cannot be represented by an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1860 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1861   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1862   EXPECT_DEATH_IF_SUPPORTED(
1863       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1864       ".*");
1865 }
1866 
1867 // Tests that ShouldRunTestOnShard() selects all tests
1868 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1869 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1870   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1871   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1872   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1873   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1874   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1875 }
1876 
1877 class ShouldShardTest : public testing::Test {
1878  protected:
SetUp()1879   void SetUp() override {
1880     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1881     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1882   }
1883 
TearDown()1884   void TearDown() override {
1885     SetEnv(index_var_, "");
1886     SetEnv(total_var_, "");
1887   }
1888 
1889   const char* index_var_;
1890   const char* total_var_;
1891 };
1892 
1893 // Tests that sharding is disabled if neither of the environment variables
1894 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1895 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1896   SetEnv(index_var_, "");
1897   SetEnv(total_var_, "");
1898 
1899   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1900   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1901 }
1902 
1903 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1904 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1905   SetEnv(index_var_, "0");
1906   SetEnv(total_var_, "1");
1907   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1908   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1909 }
1910 
1911 // Tests that sharding is enabled if total_shards > 1 and
1912 // we are not in a death test subprocess.
1913 // Environment variables are not supported on Windows CE.
1914 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1915 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1916   SetEnv(index_var_, "4");
1917   SetEnv(total_var_, "22");
1918   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1919   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1920 
1921   SetEnv(index_var_, "8");
1922   SetEnv(total_var_, "9");
1923   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1924   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1925 
1926   SetEnv(index_var_, "0");
1927   SetEnv(total_var_, "9");
1928   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1929   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1930 }
1931 #endif  // !GTEST_OS_WINDOWS_MOBILE
1932 
1933 // Tests that we exit in error if the sharding values are not valid.
1934 
1935 typedef ShouldShardTest ShouldShardDeathTest;
1936 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1937 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1938   SetEnv(index_var_, "4");
1939   SetEnv(total_var_, "4");
1940   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1941 
1942   SetEnv(index_var_, "4");
1943   SetEnv(total_var_, "-2");
1944   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1945 
1946   SetEnv(index_var_, "5");
1947   SetEnv(total_var_, "");
1948   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1949 
1950   SetEnv(index_var_, "");
1951   SetEnv(total_var_, "5");
1952   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1953 }
1954 
1955 // Tests that ShouldRunTestOnShard is a partition when 5
1956 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1957 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1958   // Choose an arbitrary number of tests and shards.
1959   const int num_tests = 17;
1960   const int num_shards = 5;
1961 
1962   // Check partitioning: each test should be on exactly 1 shard.
1963   for (int test_id = 0; test_id < num_tests; test_id++) {
1964     int prev_selected_shard_index = -1;
1965     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1966       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1967         if (prev_selected_shard_index < 0) {
1968           prev_selected_shard_index = shard_index;
1969         } else {
1970           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1971             << shard_index << " are both selected to run test " << test_id;
1972         }
1973       }
1974     }
1975   }
1976 
1977   // Check balance: This is not required by the sharding protocol, but is a
1978   // desirable property for performance.
1979   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1980     int num_tests_on_shard = 0;
1981     for (int test_id = 0; test_id < num_tests; test_id++) {
1982       num_tests_on_shard +=
1983         ShouldRunTestOnShard(num_shards, shard_index, test_id);
1984     }
1985     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1986   }
1987 }
1988 
1989 // For the same reason we are not explicitly testing everything in the
1990 // Test class, there are no separate tests for the following classes
1991 // (except for some trivial cases):
1992 //
1993 //   TestSuite, UnitTest, UnitTestResultPrinter.
1994 //
1995 // Similarly, there are no separate tests for the following macros:
1996 //
1997 //   TEST, TEST_F, RUN_ALL_TESTS
1998 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1999 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
2000   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
2001   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2002 }
2003 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2004 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2005   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2006   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2007 }
2008 
2009 // When a property using a reserved key is supplied to this function, it
2010 // tests that a non-fatal failure is added, a fatal failure is not added,
2011 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2012 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2013     const TestResult& test_result, const char* key) {
2014   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2015   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
2016                                                   << "' recorded unexpectedly.";
2017 }
2018 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2019 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2020     const char* key) {
2021   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2022   ASSERT_TRUE(test_info != nullptr);
2023   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2024                                                         key);
2025 }
2026 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2027 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2028     const char* key) {
2029   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
2030   ASSERT_TRUE(test_case != nullptr);
2031   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2032       test_case->ad_hoc_test_result(), key);
2033 }
2034 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2035 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2036     const char* key) {
2037   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2038       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2039 }
2040 
2041 // Tests that property recording functions in UnitTest outside of tests
2042 // functions correcly.  Creating a separate instance of UnitTest ensures it
2043 // is in a state similar to the UnitTest's singleton's between tests.
2044 class UnitTestRecordPropertyTest :
2045     public testing::internal::UnitTestRecordPropertyTestHelper {
2046  public:
SetUpTestSuite()2047   static void SetUpTestSuite() {
2048     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2049         "disabled");
2050     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2051         "errors");
2052     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2053         "failures");
2054     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2055         "name");
2056     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2057         "tests");
2058     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2059         "time");
2060 
2061     Test::RecordProperty("test_case_key_1", "1");
2062     const testing::TestSuite* test_suite =
2063         UnitTest::GetInstance()->current_test_case();
2064     ASSERT_TRUE(test_suite != nullptr);
2065 
2066     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2067     EXPECT_STREQ("test_case_key_1",
2068                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2069     EXPECT_STREQ("1",
2070                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2071   }
2072 };
2073 
2074 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2075 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2076   UnitTestRecordProperty("key_1", "1");
2077 
2078   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2079 
2080   EXPECT_STREQ("key_1",
2081                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2082   EXPECT_STREQ("1",
2083                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2084 }
2085 
2086 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2087 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2088   UnitTestRecordProperty("key_1", "1");
2089   UnitTestRecordProperty("key_2", "2");
2090 
2091   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2092 
2093   EXPECT_STREQ("key_1",
2094                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2095   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2096 
2097   EXPECT_STREQ("key_2",
2098                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2099   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2100 }
2101 
2102 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2103 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2104   UnitTestRecordProperty("key_1", "1");
2105   UnitTestRecordProperty("key_2", "2");
2106   UnitTestRecordProperty("key_1", "12");
2107   UnitTestRecordProperty("key_2", "22");
2108 
2109   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2110 
2111   EXPECT_STREQ("key_1",
2112                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2113   EXPECT_STREQ("12",
2114                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2115 
2116   EXPECT_STREQ("key_2",
2117                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2118   EXPECT_STREQ("22",
2119                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2120 }
2121 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2122 TEST_F(UnitTestRecordPropertyTest,
2123        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2124   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2125       "name");
2126   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2127       "value_param");
2128   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2129       "type_param");
2130   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2131       "status");
2132   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2133       "time");
2134   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2135       "classname");
2136 }
2137 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2138 TEST_F(UnitTestRecordPropertyTest,
2139        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2140   EXPECT_NONFATAL_FAILURE(
2141       Test::RecordProperty("name", "1"),
2142       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2143       " 'file', and 'line' are reserved");
2144 }
2145 
2146 class UnitTestRecordPropertyTestEnvironment : public Environment {
2147  public:
TearDown()2148   void TearDown() override {
2149     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2150         "tests");
2151     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2152         "failures");
2153     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2154         "disabled");
2155     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2156         "errors");
2157     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2158         "name");
2159     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2160         "timestamp");
2161     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2162         "time");
2163     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2164         "random_seed");
2165   }
2166 };
2167 
2168 // This will test property recording outside of any test or test case.
2169 static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
2170     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2171 
2172 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2173 // of various arities.  They do not attempt to be exhaustive.  Rather,
2174 // view them as smoke tests that can be easily reviewed and verified.
2175 // A more complete set of tests for predicate assertions can be found
2176 // in gtest_pred_impl_unittest.cc.
2177 
2178 // First, some predicates and predicate-formatters needed by the tests.
2179 
2180 // Returns true iff the argument is an even number.
IsEven(int n)2181 bool IsEven(int n) {
2182   return (n % 2) == 0;
2183 }
2184 
2185 // A functor that returns true iff the argument is an even number.
2186 struct IsEvenFunctor {
operator ()__anon963337bb0111::IsEvenFunctor2187   bool operator()(int n) { return IsEven(n); }
2188 };
2189 
2190 // A predicate-formatter function that asserts the argument is an even
2191 // number.
AssertIsEven(const char * expr,int n)2192 AssertionResult AssertIsEven(const char* expr, int n) {
2193   if (IsEven(n)) {
2194     return AssertionSuccess();
2195   }
2196 
2197   Message msg;
2198   msg << expr << " evaluates to " << n << ", which is not even.";
2199   return AssertionFailure(msg);
2200 }
2201 
2202 // A predicate function that returns AssertionResult for use in
2203 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2204 AssertionResult ResultIsEven(int n) {
2205   if (IsEven(n))
2206     return AssertionSuccess() << n << " is even";
2207   else
2208     return AssertionFailure() << n << " is odd";
2209 }
2210 
2211 // A predicate function that returns AssertionResult but gives no
2212 // explanation why it succeeds. Needed for testing that
2213 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2214 AssertionResult ResultIsEvenNoExplanation(int n) {
2215   if (IsEven(n))
2216     return AssertionSuccess();
2217   else
2218     return AssertionFailure() << n << " is odd";
2219 }
2220 
2221 // A predicate-formatter functor that asserts the argument is an even
2222 // number.
2223 struct AssertIsEvenFunctor {
operator ()__anon963337bb0111::AssertIsEvenFunctor2224   AssertionResult operator()(const char* expr, int n) {
2225     return AssertIsEven(expr, n);
2226   }
2227 };
2228 
2229 // Returns true iff the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2230 bool SumIsEven2(int n1, int n2) {
2231   return IsEven(n1 + n2);
2232 }
2233 
2234 // A functor that returns true iff the sum of the arguments is an even
2235 // number.
2236 struct SumIsEven3Functor {
operator ()__anon963337bb0111::SumIsEven3Functor2237   bool operator()(int n1, int n2, int n3) {
2238     return IsEven(n1 + n2 + n3);
2239   }
2240 };
2241 
2242 // A predicate-formatter function that asserts the sum of the
2243 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2244 AssertionResult AssertSumIsEven4(
2245     const char* e1, const char* e2, const char* e3, const char* e4,
2246     int n1, int n2, int n3, int n4) {
2247   const int sum = n1 + n2 + n3 + n4;
2248   if (IsEven(sum)) {
2249     return AssertionSuccess();
2250   }
2251 
2252   Message msg;
2253   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2254       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2255       << ") evaluates to " << sum << ", which is not even.";
2256   return AssertionFailure(msg);
2257 }
2258 
2259 // A predicate-formatter functor that asserts the sum of the arguments
2260 // is an even number.
2261 struct AssertSumIsEven5Functor {
operator ()__anon963337bb0111::AssertSumIsEven5Functor2262   AssertionResult operator()(
2263       const char* e1, const char* e2, const char* e3, const char* e4,
2264       const char* e5, int n1, int n2, int n3, int n4, int n5) {
2265     const int sum = n1 + n2 + n3 + n4 + n5;
2266     if (IsEven(sum)) {
2267       return AssertionSuccess();
2268     }
2269 
2270     Message msg;
2271     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2272         << " ("
2273         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2274         << ") evaluates to " << sum << ", which is not even.";
2275     return AssertionFailure(msg);
2276   }
2277 };
2278 
2279 
2280 // Tests unary predicate assertions.
2281 
2282 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2283 TEST(Pred1Test, WithoutFormat) {
2284   // Success cases.
2285   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2286   ASSERT_PRED1(IsEven, 4);
2287 
2288   // Failure cases.
2289   EXPECT_NONFATAL_FAILURE({  // NOLINT
2290     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2291   }, "This failure is expected.");
2292   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2293                        "evaluates to false");
2294 }
2295 
2296 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2297 TEST(Pred1Test, WithFormat) {
2298   // Success cases.
2299   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2300   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2301     << "This failure is UNEXPECTED!";
2302 
2303   // Failure cases.
2304   const int n = 5;
2305   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2306                           "n evaluates to 5, which is not even.");
2307   EXPECT_FATAL_FAILURE({  // NOLINT
2308     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2309   }, "This failure is expected.");
2310 }
2311 
2312 // Tests that unary predicate assertions evaluates their arguments
2313 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2314 TEST(Pred1Test, SingleEvaluationOnFailure) {
2315   // A success case.
2316   static int n = 0;
2317   EXPECT_PRED1(IsEven, n++);
2318   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2319 
2320   // A failure case.
2321   EXPECT_FATAL_FAILURE({  // NOLINT
2322     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2323         << "This failure is expected.";
2324   }, "This failure is expected.");
2325   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2326 }
2327 
2328 
2329 // Tests predicate assertions whose arity is >= 2.
2330 
2331 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2332 TEST(PredTest, WithoutFormat) {
2333   // Success cases.
2334   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2335   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2336 
2337   // Failure cases.
2338   const int n1 = 1;
2339   const int n2 = 2;
2340   EXPECT_NONFATAL_FAILURE({  // NOLINT
2341     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2342   }, "This failure is expected.");
2343   EXPECT_FATAL_FAILURE({  // NOLINT
2344     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2345   }, "evaluates to false");
2346 }
2347 
2348 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2349 TEST(PredTest, WithFormat) {
2350   // Success cases.
2351   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2352     "This failure is UNEXPECTED!";
2353   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2354 
2355   // Failure cases.
2356   const int n1 = 1;
2357   const int n2 = 2;
2358   const int n3 = 4;
2359   const int n4 = 6;
2360   EXPECT_NONFATAL_FAILURE({  // NOLINT
2361     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2362   }, "evaluates to 13, which is not even.");
2363   EXPECT_FATAL_FAILURE({  // NOLINT
2364     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2365         << "This failure is expected.";
2366   }, "This failure is expected.");
2367 }
2368 
2369 // Tests that predicate assertions evaluates their arguments
2370 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2371 TEST(PredTest, SingleEvaluationOnFailure) {
2372   // A success case.
2373   int n1 = 0;
2374   int n2 = 0;
2375   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2376   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2377   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2378 
2379   // Another success case.
2380   n1 = n2 = 0;
2381   int n3 = 0;
2382   int n4 = 0;
2383   int n5 = 0;
2384   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2385                       n1++, n2++, n3++, n4++, n5++)
2386                         << "This failure is UNEXPECTED!";
2387   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2388   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2389   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2390   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2391   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2392 
2393   // A failure case.
2394   n1 = n2 = n3 = 0;
2395   EXPECT_NONFATAL_FAILURE({  // NOLINT
2396     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2397         << "This failure is expected.";
2398   }, "This failure is expected.");
2399   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2400   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2401   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2402 
2403   // Another failure case.
2404   n1 = n2 = n3 = n4 = 0;
2405   EXPECT_NONFATAL_FAILURE({  // NOLINT
2406     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2407   }, "evaluates to 1, which is not even.");
2408   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2409   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2410   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2411   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2412 }
2413 
2414 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2415 TEST(PredTest, ExpectPredEvalFailure) {
2416   std::set<int> set_a = {2, 1, 3, 4, 5};
2417   std::set<int> set_b = {0, 4, 8};
2418   const auto compare_sets = [] (std::set<int>, std::set<int>) { return false; };
2419   EXPECT_NONFATAL_FAILURE(
2420       EXPECT_PRED2(compare_sets, set_a, set_b),
2421       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2422       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2423 }
2424 
2425 // Some helper functions for testing using overloaded/template
2426 // functions with ASSERT_PREDn and EXPECT_PREDn.
2427 
IsPositive(double x)2428 bool IsPositive(double x) {
2429   return x > 0;
2430 }
2431 
2432 template <typename T>
IsNegative(T x)2433 bool IsNegative(T x) {
2434   return x < 0;
2435 }
2436 
2437 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2438 bool GreaterThan(T1 x1, T2 x2) {
2439   return x1 > x2;
2440 }
2441 
2442 // Tests that overloaded functions can be used in *_PRED* as long as
2443 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2444 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2445   // C++Builder requires C-style casts rather than static_cast.
2446   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2447   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2448 }
2449 
2450 // Tests that template functions can be used in *_PRED* as long as
2451 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2452 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2453   EXPECT_PRED1(IsNegative<int>, -5);
2454   // Makes sure that we can handle templates with more than one
2455   // parameter.
2456   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2457 }
2458 
2459 
2460 // Some helper functions for testing using overloaded/template
2461 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2462 
IsPositiveFormat(const char *,int n)2463 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2464   return n > 0 ? AssertionSuccess() :
2465       AssertionFailure(Message() << "Failure");
2466 }
2467 
IsPositiveFormat(const char *,double x)2468 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2469   return x > 0 ? AssertionSuccess() :
2470       AssertionFailure(Message() << "Failure");
2471 }
2472 
2473 template <typename T>
IsNegativeFormat(const char *,T x)2474 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2475   return x < 0 ? AssertionSuccess() :
2476       AssertionFailure(Message() << "Failure");
2477 }
2478 
2479 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2480 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2481                              const T1& x1, const T2& x2) {
2482   return x1 == x2 ? AssertionSuccess() :
2483       AssertionFailure(Message() << "Failure");
2484 }
2485 
2486 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2487 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2488 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2489   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2490   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2491 }
2492 
2493 // Tests that template functions can be used in *_PRED_FORMAT* without
2494 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2495 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2496   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2497   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2498 }
2499 
2500 
2501 // Tests string assertions.
2502 
2503 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2504 TEST(StringAssertionTest, ASSERT_STREQ) {
2505   const char * const p1 = "good";
2506   ASSERT_STREQ(p1, p1);
2507 
2508   // Let p2 have the same content as p1, but be at a different address.
2509   const char p2[] = "good";
2510   ASSERT_STREQ(p1, p2);
2511 
2512   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2513                        "  \"bad\"\n  \"good\"");
2514 }
2515 
2516 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2517 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2518   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2519   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2520 }
2521 
2522 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2523 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2524   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2525 }
2526 
2527 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2528 TEST(StringAssertionTest, ASSERT_STRNE) {
2529   ASSERT_STRNE("hi", "Hi");
2530   ASSERT_STRNE("Hi", nullptr);
2531   ASSERT_STRNE(nullptr, "Hi");
2532   ASSERT_STRNE("", nullptr);
2533   ASSERT_STRNE(nullptr, "");
2534   ASSERT_STRNE("", "Hi");
2535   ASSERT_STRNE("Hi", "");
2536   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2537                        "\"Hi\" vs \"Hi\"");
2538 }
2539 
2540 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2541 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2542   ASSERT_STRCASEEQ("hi", "Hi");
2543   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2544 
2545   ASSERT_STRCASEEQ("", "");
2546   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2547                        "Ignoring case");
2548 }
2549 
2550 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2551 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2552   ASSERT_STRCASENE("hi1", "Hi2");
2553   ASSERT_STRCASENE("Hi", nullptr);
2554   ASSERT_STRCASENE(nullptr, "Hi");
2555   ASSERT_STRCASENE("", nullptr);
2556   ASSERT_STRCASENE(nullptr, "");
2557   ASSERT_STRCASENE("", "Hi");
2558   ASSERT_STRCASENE("Hi", "");
2559   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2560                        "(ignoring case)");
2561 }
2562 
2563 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2564 TEST(StringAssertionTest, STREQ_Wide) {
2565   // NULL strings.
2566   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2567 
2568   // Empty strings.
2569   ASSERT_STREQ(L"", L"");
2570 
2571   // Non-null vs NULL.
2572   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2573 
2574   // Equal strings.
2575   EXPECT_STREQ(L"Hi", L"Hi");
2576 
2577   // Unequal strings.
2578   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2579                           "Abc");
2580 
2581   // Strings containing wide characters.
2582   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2583                           "abc");
2584 
2585   // The streaming variation.
2586   EXPECT_NONFATAL_FAILURE({  // NOLINT
2587     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2588   }, "Expected failure");
2589 }
2590 
2591 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2592 TEST(StringAssertionTest, STRNE_Wide) {
2593   // NULL strings.
2594   EXPECT_NONFATAL_FAILURE(
2595       {  // NOLINT
2596         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2597       },
2598       "");
2599 
2600   // Empty strings.
2601   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2602                           "L\"\"");
2603 
2604   // Non-null vs NULL.
2605   ASSERT_STRNE(L"non-null", nullptr);
2606 
2607   // Equal strings.
2608   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2609                           "L\"Hi\"");
2610 
2611   // Unequal strings.
2612   EXPECT_STRNE(L"abc", L"Abc");
2613 
2614   // Strings containing wide characters.
2615   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2616                           "abc");
2617 
2618   // The streaming variation.
2619   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2620 }
2621 
2622 // Tests for ::testing::IsSubstring().
2623 
2624 // Tests that IsSubstring() returns the correct result when the input
2625 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2626 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2627   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2628   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2629   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2630 
2631   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2632   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2633 }
2634 
2635 // Tests that IsSubstring() returns the correct result when the input
2636 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2637 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2638   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2639   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2640   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2641 
2642   EXPECT_TRUE(
2643       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2644   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2645 }
2646 
2647 // Tests that IsSubstring() generates the correct message when the input
2648 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2649 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2650   EXPECT_STREQ("Value of: needle_expr\n"
2651                "  Actual: \"needle\"\n"
2652                "Expected: a substring of haystack_expr\n"
2653                "Which is: \"haystack\"",
2654                IsSubstring("needle_expr", "haystack_expr",
2655                            "needle", "haystack").failure_message());
2656 }
2657 
2658 // Tests that IsSubstring returns the correct result when the input
2659 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2660 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2661   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2662   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2663 }
2664 
2665 #if GTEST_HAS_STD_WSTRING
2666 // Tests that IsSubstring returns the correct result when the input
2667 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2668 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2669   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2670   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2671 }
2672 
2673 // Tests that IsSubstring() generates the correct message when the input
2674 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2675 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2676   EXPECT_STREQ("Value of: needle_expr\n"
2677                "  Actual: L\"needle\"\n"
2678                "Expected: a substring of haystack_expr\n"
2679                "Which is: L\"haystack\"",
2680                IsSubstring(
2681                    "needle_expr", "haystack_expr",
2682                    ::std::wstring(L"needle"), L"haystack").failure_message());
2683 }
2684 
2685 #endif  // GTEST_HAS_STD_WSTRING
2686 
2687 // Tests for ::testing::IsNotSubstring().
2688 
2689 // Tests that IsNotSubstring() returns the correct result when the input
2690 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2691 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2692   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2693   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2694 }
2695 
2696 // Tests that IsNotSubstring() returns the correct result when the input
2697 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2698 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2699   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2700   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2701 }
2702 
2703 // Tests that IsNotSubstring() generates the correct message when the input
2704 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2705 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2706   EXPECT_STREQ("Value of: needle_expr\n"
2707                "  Actual: L\"needle\"\n"
2708                "Expected: not a substring of haystack_expr\n"
2709                "Which is: L\"two needles\"",
2710                IsNotSubstring(
2711                    "needle_expr", "haystack_expr",
2712                    L"needle", L"two needles").failure_message());
2713 }
2714 
2715 // Tests that IsNotSubstring returns the correct result when the input
2716 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2717 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2718   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2719   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2720 }
2721 
2722 // Tests that IsNotSubstring() generates the correct message when the input
2723 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2724 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2725   EXPECT_STREQ("Value of: needle_expr\n"
2726                "  Actual: \"needle\"\n"
2727                "Expected: not a substring of haystack_expr\n"
2728                "Which is: \"two needles\"",
2729                IsNotSubstring(
2730                    "needle_expr", "haystack_expr",
2731                    ::std::string("needle"), "two needles").failure_message());
2732 }
2733 
2734 #if GTEST_HAS_STD_WSTRING
2735 
2736 // Tests that IsNotSubstring returns the correct result when the input
2737 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2738 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2739   EXPECT_FALSE(
2740       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2741   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2742 }
2743 
2744 #endif  // GTEST_HAS_STD_WSTRING
2745 
2746 // Tests floating-point assertions.
2747 
2748 template <typename RawType>
2749 class FloatingPointTest : public Test {
2750  protected:
2751   // Pre-calculated numbers to be used by the tests.
2752   struct TestValues {
2753     RawType close_to_positive_zero;
2754     RawType close_to_negative_zero;
2755     RawType further_from_negative_zero;
2756 
2757     RawType close_to_one;
2758     RawType further_from_one;
2759 
2760     RawType infinity;
2761     RawType close_to_infinity;
2762     RawType further_from_infinity;
2763 
2764     RawType nan1;
2765     RawType nan2;
2766   };
2767 
2768   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2769   typedef typename Floating::Bits Bits;
2770 
SetUp()2771   void SetUp() override {
2772     const size_t max_ulps = Floating::kMaxUlps;
2773 
2774     // The bits that represent 0.0.
2775     const Bits zero_bits = Floating(0).bits();
2776 
2777     // Makes some numbers close to 0.0.
2778     values_.close_to_positive_zero = Floating::ReinterpretBits(
2779         zero_bits + max_ulps/2);
2780     values_.close_to_negative_zero = -Floating::ReinterpretBits(
2781         zero_bits + max_ulps - max_ulps/2);
2782     values_.further_from_negative_zero = -Floating::ReinterpretBits(
2783         zero_bits + max_ulps + 1 - max_ulps/2);
2784 
2785     // The bits that represent 1.0.
2786     const Bits one_bits = Floating(1).bits();
2787 
2788     // Makes some numbers close to 1.0.
2789     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2790     values_.further_from_one = Floating::ReinterpretBits(
2791         one_bits + max_ulps + 1);
2792 
2793     // +infinity.
2794     values_.infinity = Floating::Infinity();
2795 
2796     // The bits that represent +infinity.
2797     const Bits infinity_bits = Floating(values_.infinity).bits();
2798 
2799     // Makes some numbers close to infinity.
2800     values_.close_to_infinity = Floating::ReinterpretBits(
2801         infinity_bits - max_ulps);
2802     values_.further_from_infinity = Floating::ReinterpretBits(
2803         infinity_bits - max_ulps - 1);
2804 
2805     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2806     // our NaN's are quiet; trying to process a signaling NaN would raise an
2807     // exception if our environment enables floating point exceptions.
2808     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2809         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2810     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2811         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2812   }
2813 
TestSize()2814   void TestSize() {
2815     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2816   }
2817 
2818   static TestValues values_;
2819 };
2820 
2821 template <typename RawType>
2822 typename FloatingPointTest<RawType>::TestValues
2823     FloatingPointTest<RawType>::values_;
2824 
2825 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2826 typedef FloatingPointTest<float> FloatTest;
2827 
2828 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2829 TEST_F(FloatTest, Size) {
2830   TestSize();
2831 }
2832 
2833 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2834 TEST_F(FloatTest, Zeros) {
2835   EXPECT_FLOAT_EQ(0.0, -0.0);
2836   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2837                           "1.0");
2838   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2839                        "1.5");
2840 }
2841 
2842 // Tests comparing numbers close to 0.
2843 //
2844 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2845 // overflow occurs when comparing numbers whose absolute value is very
2846 // small.
TEST_F(FloatTest,AlmostZeros)2847 TEST_F(FloatTest, AlmostZeros) {
2848   // In C++Builder, names within local classes (such as used by
2849   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2850   // scoping class.  Use a static local alias as a workaround.
2851   // We use the assignment syntax since some compilers, like Sun Studio,
2852   // don't allow initializing references using construction syntax
2853   // (parentheses).
2854   static const FloatTest::TestValues& v = this->values_;
2855 
2856   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2857   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2858   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2859 
2860   EXPECT_FATAL_FAILURE({  // NOLINT
2861     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2862                     v.further_from_negative_zero);
2863   }, "v.further_from_negative_zero");
2864 }
2865 
2866 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2867 TEST_F(FloatTest, SmallDiff) {
2868   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2869   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2870                           "values_.further_from_one");
2871 }
2872 
2873 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2874 TEST_F(FloatTest, LargeDiff) {
2875   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2876                           "3.0");
2877 }
2878 
2879 // Tests comparing with infinity.
2880 //
2881 // This ensures that no overflow occurs when comparing numbers whose
2882 // absolute value is very large.
TEST_F(FloatTest,Infinity)2883 TEST_F(FloatTest, Infinity) {
2884   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2885   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2886   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2887                           "-values_.infinity");
2888 
2889   // This is interesting as the representations of infinity and nan1
2890   // are only 1 DLP apart.
2891   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2892                           "values_.nan1");
2893 }
2894 
2895 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2896 TEST_F(FloatTest, NaN) {
2897   // In C++Builder, names within local classes (such as used by
2898   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2899   // scoping class.  Use a static local alias as a workaround.
2900   // We use the assignment syntax since some compilers, like Sun Studio,
2901   // don't allow initializing references using construction syntax
2902   // (parentheses).
2903   static const FloatTest::TestValues& v = this->values_;
2904 
2905   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2906                           "v.nan1");
2907   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2908                           "v.nan2");
2909   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2910                           "v.nan1");
2911 
2912   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2913                        "v.infinity");
2914 }
2915 
2916 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2917 TEST_F(FloatTest, Reflexive) {
2918   EXPECT_FLOAT_EQ(0.0, 0.0);
2919   EXPECT_FLOAT_EQ(1.0, 1.0);
2920   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2921 }
2922 
2923 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2924 TEST_F(FloatTest, Commutative) {
2925   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2926   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2927 
2928   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2929   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2930                           "1.0");
2931 }
2932 
2933 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2934 TEST_F(FloatTest, EXPECT_NEAR) {
2935   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2936   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2937   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2938                           "The difference between 1.0f and 1.5f is 0.5, "
2939                           "which exceeds 0.25f");
2940   // To work around a bug in gcc 2.95.0, there is intentionally no
2941   // space after the first comma in the previous line.
2942 }
2943 
2944 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2945 TEST_F(FloatTest, ASSERT_NEAR) {
2946   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2947   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2948   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2949                        "The difference between 1.0f and 1.5f is 0.5, "
2950                        "which exceeds 0.25f");
2951   // To work around a bug in gcc 2.95.0, there is intentionally no
2952   // space after the first comma in the previous line.
2953 }
2954 
2955 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2956 TEST_F(FloatTest, FloatLESucceeds) {
2957   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2958   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2959 
2960   // or when val1 is greater than, but almost equals to, val2.
2961   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2962 }
2963 
2964 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2965 TEST_F(FloatTest, FloatLEFails) {
2966   // When val1 is greater than val2 by a large margin,
2967   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2968                           "(2.0f) <= (1.0f)");
2969 
2970   // or by a small yet non-negligible margin,
2971   EXPECT_NONFATAL_FAILURE({  // NOLINT
2972     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2973   }, "(values_.further_from_one) <= (1.0f)");
2974 
2975   EXPECT_NONFATAL_FAILURE({  // NOLINT
2976     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2977   }, "(values_.nan1) <= (values_.infinity)");
2978   EXPECT_NONFATAL_FAILURE({  // NOLINT
2979     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2980   }, "(-values_.infinity) <= (values_.nan1)");
2981   EXPECT_FATAL_FAILURE({  // NOLINT
2982     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2983   }, "(values_.nan1) <= (values_.nan1)");
2984 }
2985 
2986 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2987 typedef FloatingPointTest<double> DoubleTest;
2988 
2989 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2990 TEST_F(DoubleTest, Size) {
2991   TestSize();
2992 }
2993 
2994 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2995 TEST_F(DoubleTest, Zeros) {
2996   EXPECT_DOUBLE_EQ(0.0, -0.0);
2997   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2998                           "1.0");
2999   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
3000                        "1.0");
3001 }
3002 
3003 // Tests comparing numbers close to 0.
3004 //
3005 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
3006 // overflow occurs when comparing numbers whose absolute value is very
3007 // small.
TEST_F(DoubleTest,AlmostZeros)3008 TEST_F(DoubleTest, AlmostZeros) {
3009   // In C++Builder, names within local classes (such as used by
3010   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3011   // scoping class.  Use a static local alias as a workaround.
3012   // We use the assignment syntax since some compilers, like Sun Studio,
3013   // don't allow initializing references using construction syntax
3014   // (parentheses).
3015   static const DoubleTest::TestValues& v = this->values_;
3016 
3017   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3018   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3019   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3020 
3021   EXPECT_FATAL_FAILURE({  // NOLINT
3022     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3023                      v.further_from_negative_zero);
3024   }, "v.further_from_negative_zero");
3025 }
3026 
3027 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3028 TEST_F(DoubleTest, SmallDiff) {
3029   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3030   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3031                           "values_.further_from_one");
3032 }
3033 
3034 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3035 TEST_F(DoubleTest, LargeDiff) {
3036   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
3037                           "3.0");
3038 }
3039 
3040 // Tests comparing with infinity.
3041 //
3042 // This ensures that no overflow occurs when comparing numbers whose
3043 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3044 TEST_F(DoubleTest, Infinity) {
3045   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3046   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3047   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3048                           "-values_.infinity");
3049 
3050   // This is interesting as the representations of infinity_ and nan1_
3051   // are only 1 DLP apart.
3052   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3053                           "values_.nan1");
3054 }
3055 
3056 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3057 TEST_F(DoubleTest, NaN) {
3058   static const DoubleTest::TestValues& v = this->values_;
3059 
3060   // Nokia's STLport crashes if we try to output infinity or NaN.
3061   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3062                           "v.nan1");
3063   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3064   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3065   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3066                        "v.infinity");
3067 }
3068 
3069 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3070 TEST_F(DoubleTest, Reflexive) {
3071   EXPECT_DOUBLE_EQ(0.0, 0.0);
3072   EXPECT_DOUBLE_EQ(1.0, 1.0);
3073   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3074 }
3075 
3076 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3077 TEST_F(DoubleTest, Commutative) {
3078   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3079   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3080 
3081   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3082   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3083                           "1.0");
3084 }
3085 
3086 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3087 TEST_F(DoubleTest, EXPECT_NEAR) {
3088   EXPECT_NEAR(-1.0, -1.1, 0.2);
3089   EXPECT_NEAR(2.0, 3.0, 1.0);
3090   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3091                           "The difference between 1.0 and 1.5 is 0.5, "
3092                           "which exceeds 0.25");
3093   // To work around a bug in gcc 2.95.0, there is intentionally no
3094   // space after the first comma in the previous statement.
3095 }
3096 
3097 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3098 TEST_F(DoubleTest, ASSERT_NEAR) {
3099   ASSERT_NEAR(-1.0, -1.1, 0.2);
3100   ASSERT_NEAR(2.0, 3.0, 1.0);
3101   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3102                        "The difference between 1.0 and 1.5 is 0.5, "
3103                        "which exceeds 0.25");
3104   // To work around a bug in gcc 2.95.0, there is intentionally no
3105   // space after the first comma in the previous statement.
3106 }
3107 
3108 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3109 TEST_F(DoubleTest, DoubleLESucceeds) {
3110   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3111   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3112 
3113   // or when val1 is greater than, but almost equals to, val2.
3114   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3115 }
3116 
3117 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3118 TEST_F(DoubleTest, DoubleLEFails) {
3119   // When val1 is greater than val2 by a large margin,
3120   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3121                           "(2.0) <= (1.0)");
3122 
3123   // or by a small yet non-negligible margin,
3124   EXPECT_NONFATAL_FAILURE({  // NOLINT
3125     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3126   }, "(values_.further_from_one) <= (1.0)");
3127 
3128   EXPECT_NONFATAL_FAILURE({  // NOLINT
3129     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3130   }, "(values_.nan1) <= (values_.infinity)");
3131   EXPECT_NONFATAL_FAILURE({  // NOLINT
3132     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3133   }, " (-values_.infinity) <= (values_.nan1)");
3134   EXPECT_FATAL_FAILURE({  // NOLINT
3135     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3136   }, "(values_.nan1) <= (values_.nan1)");
3137 }
3138 
3139 
3140 // Verifies that a test or test case whose name starts with DISABLED_ is
3141 // not run.
3142 
3143 // A test whose name starts with DISABLED_.
3144 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3145 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3146   FAIL() << "Unexpected failure: Disabled test should not be run.";
3147 }
3148 
3149 // A test whose name does not start with DISABLED_.
3150 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3151 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3152   EXPECT_EQ(1, 1);
3153 }
3154 
3155 // A test case whose name starts with DISABLED_.
3156 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3157 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3158   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3159 }
3160 
3161 // A test case and test whose names start with DISABLED_.
3162 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3163 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3164   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3165 }
3166 
3167 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3168 // TearDownTestSuite() are not called.
3169 class DisabledTestsTest : public Test {
3170  protected:
SetUpTestSuite()3171   static void SetUpTestSuite() {
3172     FAIL() << "Unexpected failure: All tests disabled in test case. "
3173               "SetUpTestSuite() should not be called.";
3174   }
3175 
TearDownTestSuite()3176   static void TearDownTestSuite() {
3177     FAIL() << "Unexpected failure: All tests disabled in test case. "
3178               "TearDownTestSuite() should not be called.";
3179   }
3180 };
3181 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3182 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3183   FAIL() << "Unexpected failure: Disabled test should not be run.";
3184 }
3185 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3186 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3187   FAIL() << "Unexpected failure: Disabled test should not be run.";
3188 }
3189 
3190 // Tests that disabled typed tests aren't run.
3191 
3192 #if GTEST_HAS_TYPED_TEST
3193 
3194 template <typename T>
3195 class TypedTest : public Test {
3196 };
3197 
3198 typedef testing::Types<int, double> NumericTypes;
3199 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3200 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3201 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3202   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3203 }
3204 
3205 template <typename T>
3206 class DISABLED_TypedTest : public Test {
3207 };
3208 
3209 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3210 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3211 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3212   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3213 }
3214 
3215 #endif  // GTEST_HAS_TYPED_TEST
3216 
3217 // Tests that disabled type-parameterized tests aren't run.
3218 
3219 #if GTEST_HAS_TYPED_TEST_P
3220 
3221 template <typename T>
3222 class TypedTestP : public Test {
3223 };
3224 
3225 TYPED_TEST_SUITE_P(TypedTestP);
3226 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3227 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3228   FAIL() << "Unexpected failure: "
3229          << "Disabled type-parameterized test should not run.";
3230 }
3231 
3232 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3233 
3234 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3235 
3236 template <typename T>
3237 class DISABLED_TypedTestP : public Test {
3238 };
3239 
3240 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3241 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3242 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3243   FAIL() << "Unexpected failure: "
3244          << "Disabled type-parameterized test should not run.";
3245 }
3246 
3247 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3248 
3249 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3250 
3251 #endif  // GTEST_HAS_TYPED_TEST_P
3252 
3253 // Tests that assertion macros evaluate their arguments exactly once.
3254 
3255 class SingleEvaluationTest : public Test {
3256  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3257   // This helper function is needed by the FailedASSERT_STREQ test
3258   // below.  It's public to work around C++Builder's bug with scoping local
3259   // classes.
CompareAndIncrementCharPtrs()3260   static void CompareAndIncrementCharPtrs() {
3261     ASSERT_STREQ(p1_++, p2_++);
3262   }
3263 
3264   // This helper function is needed by the FailedASSERT_NE test below.  It's
3265   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3266   static void CompareAndIncrementInts() {
3267     ASSERT_NE(a_++, b_++);
3268   }
3269 
3270  protected:
SingleEvaluationTest()3271   SingleEvaluationTest() {
3272     p1_ = s1_;
3273     p2_ = s2_;
3274     a_ = 0;
3275     b_ = 0;
3276   }
3277 
3278   static const char* const s1_;
3279   static const char* const s2_;
3280   static const char* p1_;
3281   static const char* p2_;
3282 
3283   static int a_;
3284   static int b_;
3285 };
3286 
3287 const char* const SingleEvaluationTest::s1_ = "01234";
3288 const char* const SingleEvaluationTest::s2_ = "abcde";
3289 const char* SingleEvaluationTest::p1_;
3290 const char* SingleEvaluationTest::p2_;
3291 int SingleEvaluationTest::a_;
3292 int SingleEvaluationTest::b_;
3293 
3294 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3295 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3296 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3297   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3298                        "p2_++");
3299   EXPECT_EQ(s1_ + 1, p1_);
3300   EXPECT_EQ(s2_ + 1, p2_);
3301 }
3302 
3303 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3304 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3305   // successful EXPECT_STRNE
3306   EXPECT_STRNE(p1_++, p2_++);
3307   EXPECT_EQ(s1_ + 1, p1_);
3308   EXPECT_EQ(s2_ + 1, p2_);
3309 
3310   // failed EXPECT_STRCASEEQ
3311   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3312                           "Ignoring case");
3313   EXPECT_EQ(s1_ + 2, p1_);
3314   EXPECT_EQ(s2_ + 2, p2_);
3315 }
3316 
3317 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3318 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3319 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3320   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3321                        "(a_++) != (b_++)");
3322   EXPECT_EQ(1, a_);
3323   EXPECT_EQ(1, b_);
3324 }
3325 
3326 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3327 TEST_F(SingleEvaluationTest, OtherCases) {
3328   // successful EXPECT_TRUE
3329   EXPECT_TRUE(0 == a_++);  // NOLINT
3330   EXPECT_EQ(1, a_);
3331 
3332   // failed EXPECT_TRUE
3333   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3334   EXPECT_EQ(2, a_);
3335 
3336   // successful EXPECT_GT
3337   EXPECT_GT(a_++, b_++);
3338   EXPECT_EQ(3, a_);
3339   EXPECT_EQ(1, b_);
3340 
3341   // failed EXPECT_LT
3342   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3343   EXPECT_EQ(4, a_);
3344   EXPECT_EQ(2, b_);
3345 
3346   // successful ASSERT_TRUE
3347   ASSERT_TRUE(0 < a_++);  // NOLINT
3348   EXPECT_EQ(5, a_);
3349 
3350   // successful ASSERT_GT
3351   ASSERT_GT(a_++, b_++);
3352   EXPECT_EQ(6, a_);
3353   EXPECT_EQ(3, b_);
3354 }
3355 
3356 #if GTEST_HAS_EXCEPTIONS
3357 
ThrowAnInteger()3358 void ThrowAnInteger() {
3359   throw 1;
3360 }
3361 
3362 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3363 TEST_F(SingleEvaluationTest, ExceptionTests) {
3364   // successful EXPECT_THROW
3365   EXPECT_THROW({  // NOLINT
3366     a_++;
3367     ThrowAnInteger();
3368   }, int);
3369   EXPECT_EQ(1, a_);
3370 
3371   // failed EXPECT_THROW, throws different
3372   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3373     a_++;
3374     ThrowAnInteger();
3375   }, bool), "throws a different type");
3376   EXPECT_EQ(2, a_);
3377 
3378   // failed EXPECT_THROW, throws nothing
3379   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3380   EXPECT_EQ(3, a_);
3381 
3382   // successful EXPECT_NO_THROW
3383   EXPECT_NO_THROW(a_++);
3384   EXPECT_EQ(4, a_);
3385 
3386   // failed EXPECT_NO_THROW
3387   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3388     a_++;
3389     ThrowAnInteger();
3390   }), "it throws");
3391   EXPECT_EQ(5, a_);
3392 
3393   // successful EXPECT_ANY_THROW
3394   EXPECT_ANY_THROW({  // NOLINT
3395     a_++;
3396     ThrowAnInteger();
3397   });
3398   EXPECT_EQ(6, a_);
3399 
3400   // failed EXPECT_ANY_THROW
3401   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3402   EXPECT_EQ(7, a_);
3403 }
3404 
3405 #endif  // GTEST_HAS_EXCEPTIONS
3406 
3407 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3408 class NoFatalFailureTest : public Test {
3409  protected:
Succeeds()3410   void Succeeds() {}
FailsNonFatal()3411   void FailsNonFatal() {
3412     ADD_FAILURE() << "some non-fatal failure";
3413   }
Fails()3414   void Fails() {
3415     FAIL() << "some fatal failure";
3416   }
3417 
DoAssertNoFatalFailureOnFails()3418   void DoAssertNoFatalFailureOnFails() {
3419     ASSERT_NO_FATAL_FAILURE(Fails());
3420     ADD_FAILURE() << "should not reach here.";
3421   }
3422 
DoExpectNoFatalFailureOnFails()3423   void DoExpectNoFatalFailureOnFails() {
3424     EXPECT_NO_FATAL_FAILURE(Fails());
3425     ADD_FAILURE() << "other failure";
3426   }
3427 };
3428 
TEST_F(NoFatalFailureTest,NoFailure)3429 TEST_F(NoFatalFailureTest, NoFailure) {
3430   EXPECT_NO_FATAL_FAILURE(Succeeds());
3431   ASSERT_NO_FATAL_FAILURE(Succeeds());
3432 }
3433 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3434 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3435   EXPECT_NONFATAL_FAILURE(
3436       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3437       "some non-fatal failure");
3438   EXPECT_NONFATAL_FAILURE(
3439       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3440       "some non-fatal failure");
3441 }
3442 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3443 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3444   TestPartResultArray gtest_failures;
3445   {
3446     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3447     DoAssertNoFatalFailureOnFails();
3448   }
3449   ASSERT_EQ(2, gtest_failures.size());
3450   EXPECT_EQ(TestPartResult::kFatalFailure,
3451             gtest_failures.GetTestPartResult(0).type());
3452   EXPECT_EQ(TestPartResult::kFatalFailure,
3453             gtest_failures.GetTestPartResult(1).type());
3454   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3455                       gtest_failures.GetTestPartResult(0).message());
3456   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3457                       gtest_failures.GetTestPartResult(1).message());
3458 }
3459 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3460 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3461   TestPartResultArray gtest_failures;
3462   {
3463     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3464     DoExpectNoFatalFailureOnFails();
3465   }
3466   ASSERT_EQ(3, gtest_failures.size());
3467   EXPECT_EQ(TestPartResult::kFatalFailure,
3468             gtest_failures.GetTestPartResult(0).type());
3469   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3470             gtest_failures.GetTestPartResult(1).type());
3471   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3472             gtest_failures.GetTestPartResult(2).type());
3473   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3474                       gtest_failures.GetTestPartResult(0).message());
3475   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3476                       gtest_failures.GetTestPartResult(1).message());
3477   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3478                       gtest_failures.GetTestPartResult(2).message());
3479 }
3480 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3481 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3482   TestPartResultArray gtest_failures;
3483   {
3484     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3485     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3486   }
3487   ASSERT_EQ(2, gtest_failures.size());
3488   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3489             gtest_failures.GetTestPartResult(0).type());
3490   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3491             gtest_failures.GetTestPartResult(1).type());
3492   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3493                       gtest_failures.GetTestPartResult(0).message());
3494   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3495                       gtest_failures.GetTestPartResult(1).message());
3496 }
3497 
3498 // Tests non-string assertions.
3499 
EditsToString(const std::vector<EditType> & edits)3500 std::string EditsToString(const std::vector<EditType>& edits) {
3501   std::string out;
3502   for (size_t i = 0; i < edits.size(); ++i) {
3503     static const char kEdits[] = " +-/";
3504     out.append(1, kEdits[edits[i]]);
3505   }
3506   return out;
3507 }
3508 
CharsToIndices(const std::string & str)3509 std::vector<size_t> CharsToIndices(const std::string& str) {
3510   std::vector<size_t> out;
3511   for (size_t i = 0; i < str.size(); ++i) {
3512     out.push_back(str[i]);
3513   }
3514   return out;
3515 }
3516 
CharsToLines(const std::string & str)3517 std::vector<std::string> CharsToLines(const std::string& str) {
3518   std::vector<std::string> out;
3519   for (size_t i = 0; i < str.size(); ++i) {
3520     out.push_back(str.substr(i, 1));
3521   }
3522   return out;
3523 }
3524 
TEST(EditDistance,TestSuites)3525 TEST(EditDistance, TestSuites) {
3526   struct Case {
3527     int line;
3528     const char* left;
3529     const char* right;
3530     const char* expected_edits;
3531     const char* expected_diff;
3532   };
3533   static const Case kCases[] = {
3534       // No change.
3535       {__LINE__, "A", "A", " ", ""},
3536       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3537       // Simple adds.
3538       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3539       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3540       // Simple removes.
3541       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3542       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3543       // Simple replaces.
3544       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3545       {__LINE__, "ABCD", "abcd", "////",
3546        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3547       // Path finding.
3548       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3549        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3550       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3551        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3552       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3553        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3554       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3555        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3556        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3557       {}};
3558   for (const Case* c = kCases; c->left; ++c) {
3559     EXPECT_TRUE(c->expected_edits ==
3560                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3561                                                     CharsToIndices(c->right))))
3562         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3563         << EditsToString(CalculateOptimalEdits(
3564                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
3565     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3566                                                       CharsToLines(c->right)))
3567         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3568         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3569         << ">";
3570   }
3571 }
3572 
3573 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3574 TEST(AssertionTest, EqFailure) {
3575   const std::string foo_val("5"), bar_val("6");
3576   const std::string msg1(
3577       EqFailure("foo", "bar", foo_val, bar_val, false)
3578       .failure_message());
3579   EXPECT_STREQ(
3580       "Expected equality of these values:\n"
3581       "  foo\n"
3582       "    Which is: 5\n"
3583       "  bar\n"
3584       "    Which is: 6",
3585       msg1.c_str());
3586 
3587   const std::string msg2(
3588       EqFailure("foo", "6", foo_val, bar_val, false)
3589       .failure_message());
3590   EXPECT_STREQ(
3591       "Expected equality of these values:\n"
3592       "  foo\n"
3593       "    Which is: 5\n"
3594       "  6",
3595       msg2.c_str());
3596 
3597   const std::string msg3(
3598       EqFailure("5", "bar", foo_val, bar_val, false)
3599       .failure_message());
3600   EXPECT_STREQ(
3601       "Expected equality of these values:\n"
3602       "  5\n"
3603       "  bar\n"
3604       "    Which is: 6",
3605       msg3.c_str());
3606 
3607   const std::string msg4(
3608       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3609   EXPECT_STREQ(
3610       "Expected equality of these values:\n"
3611       "  5\n"
3612       "  6",
3613       msg4.c_str());
3614 
3615   const std::string msg5(
3616       EqFailure("foo", "bar",
3617                 std::string("\"x\""), std::string("\"y\""),
3618                 true).failure_message());
3619   EXPECT_STREQ(
3620       "Expected equality of these values:\n"
3621       "  foo\n"
3622       "    Which is: \"x\"\n"
3623       "  bar\n"
3624       "    Which is: \"y\"\n"
3625       "Ignoring case",
3626       msg5.c_str());
3627 }
3628 
TEST(AssertionTest,EqFailureWithDiff)3629 TEST(AssertionTest, EqFailureWithDiff) {
3630   const std::string left(
3631       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3632   const std::string right(
3633       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3634   const std::string msg1(
3635       EqFailure("left", "right", left, right, false).failure_message());
3636   EXPECT_STREQ(
3637       "Expected equality of these values:\n"
3638       "  left\n"
3639       "    Which is: "
3640       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3641       "  right\n"
3642       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3643       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3644       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3645       msg1.c_str());
3646 }
3647 
3648 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3649 TEST(AssertionTest, AppendUserMessage) {
3650   const std::string foo("foo");
3651 
3652   Message msg;
3653   EXPECT_STREQ("foo",
3654                AppendUserMessage(foo, msg).c_str());
3655 
3656   msg << "bar";
3657   EXPECT_STREQ("foo\nbar",
3658                AppendUserMessage(foo, msg).c_str());
3659 }
3660 
3661 #ifdef __BORLANDC__
3662 // Silences warnings: "Condition is always true", "Unreachable code"
3663 # pragma option push -w-ccc -w-rch
3664 #endif
3665 
3666 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3667 TEST(AssertionTest, ASSERT_TRUE) {
3668   ASSERT_TRUE(2 > 1);  // NOLINT
3669   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3670                        "2 < 1");
3671 }
3672 
3673 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3674 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3675   ASSERT_TRUE(ResultIsEven(2));
3676 #ifndef __BORLANDC__
3677   // ICE's in C++Builder.
3678   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3679                        "Value of: ResultIsEven(3)\n"
3680                        "  Actual: false (3 is odd)\n"
3681                        "Expected: true");
3682 #endif
3683   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3684   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3685                        "Value of: ResultIsEvenNoExplanation(3)\n"
3686                        "  Actual: false (3 is odd)\n"
3687                        "Expected: true");
3688 }
3689 
3690 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3691 TEST(AssertionTest, ASSERT_FALSE) {
3692   ASSERT_FALSE(2 < 1);  // NOLINT
3693   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3694                        "Value of: 2 > 1\n"
3695                        "  Actual: true\n"
3696                        "Expected: false");
3697 }
3698 
3699 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3700 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3701   ASSERT_FALSE(ResultIsEven(3));
3702 #ifndef __BORLANDC__
3703   // ICE's in C++Builder.
3704   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3705                        "Value of: ResultIsEven(2)\n"
3706                        "  Actual: true (2 is even)\n"
3707                        "Expected: false");
3708 #endif
3709   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3710   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3711                        "Value of: ResultIsEvenNoExplanation(2)\n"
3712                        "  Actual: true\n"
3713                        "Expected: false");
3714 }
3715 
3716 #ifdef __BORLANDC__
3717 // Restores warnings after previous "#pragma option push" suppressed them
3718 # pragma option pop
3719 #endif
3720 
3721 // Tests using ASSERT_EQ on double values.  The purpose is to make
3722 // sure that the specialization we did for integer and anonymous enums
3723 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3724 TEST(ExpectTest, ASSERT_EQ_Double) {
3725   // A success.
3726   ASSERT_EQ(5.6, 5.6);
3727 
3728   // A failure.
3729   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3730                        "5.1");
3731 }
3732 
3733 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3734 TEST(AssertionTest, ASSERT_EQ) {
3735   ASSERT_EQ(5, 2 + 3);
3736   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3737                        "Expected equality of these values:\n"
3738                        "  5\n"
3739                        "  2*3\n"
3740                        "    Which is: 6");
3741 }
3742 
3743 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3744 TEST(AssertionTest, ASSERT_EQ_NULL) {
3745   // A success.
3746   const char* p = nullptr;
3747   // Some older GCC versions may issue a spurious warning in this or the next
3748   // assertion statement. This warning should not be suppressed with
3749   // static_cast since the test verifies the ability to use bare NULL as the
3750   // expected parameter to the macro.
3751   ASSERT_EQ(nullptr, p);
3752 
3753   // A failure.
3754   static int n = 0;
3755   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3756 }
3757 
3758 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3759 // treated as a null pointer by the compiler, we need to make sure
3760 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3761 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3762 TEST(ExpectTest, ASSERT_EQ_0) {
3763   int n = 0;
3764 
3765   // A success.
3766   ASSERT_EQ(0, n);
3767 
3768   // A failure.
3769   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3770                        "  0\n  5.6");
3771 }
3772 
3773 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3774 TEST(AssertionTest, ASSERT_NE) {
3775   ASSERT_NE(6, 7);
3776   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3777                        "Expected: ('a') != ('a'), "
3778                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3779 }
3780 
3781 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3782 TEST(AssertionTest, ASSERT_LE) {
3783   ASSERT_LE(2, 3);
3784   ASSERT_LE(2, 2);
3785   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3786                        "Expected: (2) <= (0), actual: 2 vs 0");
3787 }
3788 
3789 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3790 TEST(AssertionTest, ASSERT_LT) {
3791   ASSERT_LT(2, 3);
3792   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3793                        "Expected: (2) < (2), actual: 2 vs 2");
3794 }
3795 
3796 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3797 TEST(AssertionTest, ASSERT_GE) {
3798   ASSERT_GE(2, 1);
3799   ASSERT_GE(2, 2);
3800   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3801                        "Expected: (2) >= (3), actual: 2 vs 3");
3802 }
3803 
3804 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3805 TEST(AssertionTest, ASSERT_GT) {
3806   ASSERT_GT(2, 1);
3807   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3808                        "Expected: (2) > (2), actual: 2 vs 2");
3809 }
3810 
3811 #if GTEST_HAS_EXCEPTIONS
3812 
ThrowNothing()3813 void ThrowNothing() {}
3814 
3815 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3816 TEST(AssertionTest, ASSERT_THROW) {
3817   ASSERT_THROW(ThrowAnInteger(), int);
3818 
3819 # ifndef __BORLANDC__
3820 
3821   // ICE's in C++Builder 2007 and 2009.
3822   EXPECT_FATAL_FAILURE(
3823       ASSERT_THROW(ThrowAnInteger(), bool),
3824       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3825       "  Actual: it throws a different type.");
3826 # endif
3827 
3828   EXPECT_FATAL_FAILURE(
3829       ASSERT_THROW(ThrowNothing(), bool),
3830       "Expected: ThrowNothing() throws an exception of type bool.\n"
3831       "  Actual: it throws nothing.");
3832 }
3833 
3834 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3835 TEST(AssertionTest, ASSERT_NO_THROW) {
3836   ASSERT_NO_THROW(ThrowNothing());
3837   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3838                        "Expected: ThrowAnInteger() doesn't throw an exception."
3839                        "\n  Actual: it throws.");
3840 }
3841 
3842 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3843 TEST(AssertionTest, ASSERT_ANY_THROW) {
3844   ASSERT_ANY_THROW(ThrowAnInteger());
3845   EXPECT_FATAL_FAILURE(
3846       ASSERT_ANY_THROW(ThrowNothing()),
3847       "Expected: ThrowNothing() throws an exception.\n"
3848       "  Actual: it doesn't.");
3849 }
3850 
3851 #endif  // GTEST_HAS_EXCEPTIONS
3852 
3853 // Makes sure we deal with the precedence of <<.  This test should
3854 // compile.
TEST(AssertionTest,AssertPrecedence)3855 TEST(AssertionTest, AssertPrecedence) {
3856   ASSERT_EQ(1 < 2, true);
3857   bool false_value = false;
3858   ASSERT_EQ(true && false_value, false);
3859 }
3860 
3861 // A subroutine used by the following test.
TestEq1(int x)3862 void TestEq1(int x) {
3863   ASSERT_EQ(1, x);
3864 }
3865 
3866 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3867 TEST(AssertionTest, NonFixtureSubroutine) {
3868   EXPECT_FATAL_FAILURE(TestEq1(2),
3869                        "  x\n    Which is: 2");
3870 }
3871 
3872 // An uncopyable class.
3873 class Uncopyable {
3874  public:
Uncopyable(int a_value)3875   explicit Uncopyable(int a_value) : value_(a_value) {}
3876 
value() const3877   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3878   bool operator==(const Uncopyable& rhs) const {
3879     return value() == rhs.value();
3880   }
3881  private:
3882   // This constructor deliberately has no implementation, as we don't
3883   // want this class to be copyable.
3884   Uncopyable(const Uncopyable&);  // NOLINT
3885 
3886   int value_;
3887 };
3888 
operator <<(::std::ostream & os,const Uncopyable & value)3889 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3890   return os << value.value();
3891 }
3892 
3893 
IsPositiveUncopyable(const Uncopyable & x)3894 bool IsPositiveUncopyable(const Uncopyable& x) {
3895   return x.value() > 0;
3896 }
3897 
3898 // A subroutine used by the following test.
TestAssertNonPositive()3899 void TestAssertNonPositive() {
3900   Uncopyable y(-1);
3901   ASSERT_PRED1(IsPositiveUncopyable, y);
3902 }
3903 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3904 void TestAssertEqualsUncopyable() {
3905   Uncopyable x(5);
3906   Uncopyable y(-1);
3907   ASSERT_EQ(x, y);
3908 }
3909 
3910 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3911 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3912   Uncopyable x(5);
3913   ASSERT_PRED1(IsPositiveUncopyable, x);
3914   ASSERT_EQ(x, x);
3915   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3916     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3917   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3918                        "Expected equality of these values:\n"
3919                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3920 }
3921 
3922 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3923 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3924   Uncopyable x(5);
3925   EXPECT_PRED1(IsPositiveUncopyable, x);
3926   Uncopyable y(-1);
3927   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3928     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3929   EXPECT_EQ(x, x);
3930   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3931                           "Expected equality of these values:\n"
3932                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3933 }
3934 
3935 enum NamedEnum {
3936   kE1 = 0,
3937   kE2 = 1
3938 };
3939 
TEST(AssertionTest,NamedEnum)3940 TEST(AssertionTest, NamedEnum) {
3941   EXPECT_EQ(kE1, kE1);
3942   EXPECT_LT(kE1, kE2);
3943   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3944   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3945 }
3946 
3947 // Sun Studio and HP aCC2reject this code.
3948 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3949 
3950 // Tests using assertions with anonymous enums.
3951 enum {
3952   kCaseA = -1,
3953 
3954 # if GTEST_OS_LINUX
3955 
3956   // We want to test the case where the size of the anonymous enum is
3957   // larger than sizeof(int), to make sure our implementation of the
3958   // assertions doesn't truncate the enums.  However, MSVC
3959   // (incorrectly) doesn't allow an enum value to exceed the range of
3960   // an int, so this has to be conditionally compiled.
3961   //
3962   // On Linux, kCaseB and kCaseA have the same value when truncated to
3963   // int size.  We want to test whether this will confuse the
3964   // assertions.
3965   kCaseB = testing::internal::kMaxBiggestInt,
3966 
3967 # else
3968 
3969   kCaseB = INT_MAX,
3970 
3971 # endif  // GTEST_OS_LINUX
3972 
3973   kCaseC = 42
3974 };
3975 
TEST(AssertionTest,AnonymousEnum)3976 TEST(AssertionTest, AnonymousEnum) {
3977 # if GTEST_OS_LINUX
3978 
3979   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3980 
3981 # endif  // GTEST_OS_LINUX
3982 
3983   EXPECT_EQ(kCaseA, kCaseA);
3984   EXPECT_NE(kCaseA, kCaseB);
3985   EXPECT_LT(kCaseA, kCaseB);
3986   EXPECT_LE(kCaseA, kCaseB);
3987   EXPECT_GT(kCaseB, kCaseA);
3988   EXPECT_GE(kCaseA, kCaseA);
3989   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3990                           "(kCaseA) >= (kCaseB)");
3991   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3992                           "-1 vs 42");
3993 
3994   ASSERT_EQ(kCaseA, kCaseA);
3995   ASSERT_NE(kCaseA, kCaseB);
3996   ASSERT_LT(kCaseA, kCaseB);
3997   ASSERT_LE(kCaseA, kCaseB);
3998   ASSERT_GT(kCaseB, kCaseA);
3999   ASSERT_GE(kCaseA, kCaseA);
4000 
4001 # ifndef __BORLANDC__
4002 
4003   // ICE's in C++Builder.
4004   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
4005                        "  kCaseB\n    Which is: ");
4006   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4007                        "\n    Which is: 42");
4008 # endif
4009 
4010   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4011                        "\n    Which is: -1");
4012 }
4013 
4014 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
4015 
4016 #if GTEST_OS_WINDOWS
4017 
UnexpectedHRESULTFailure()4018 static HRESULT UnexpectedHRESULTFailure() {
4019   return E_UNEXPECTED;
4020 }
4021 
OkHRESULTSuccess()4022 static HRESULT OkHRESULTSuccess() {
4023   return S_OK;
4024 }
4025 
FalseHRESULTSuccess()4026 static HRESULT FalseHRESULTSuccess() {
4027   return S_FALSE;
4028 }
4029 
4030 // HRESULT assertion tests test both zero and non-zero
4031 // success codes as well as failure message for each.
4032 //
4033 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4034 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4035   EXPECT_HRESULT_SUCCEEDED(S_OK);
4036   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4037 
4038   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4039     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4040     "  Actual: 0x8000FFFF");
4041 }
4042 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4043 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4044   ASSERT_HRESULT_SUCCEEDED(S_OK);
4045   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4046 
4047   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4048     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4049     "  Actual: 0x8000FFFF");
4050 }
4051 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4052 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4053   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4054 
4055   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4056     "Expected: (OkHRESULTSuccess()) fails.\n"
4057     "  Actual: 0x0");
4058   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4059     "Expected: (FalseHRESULTSuccess()) fails.\n"
4060     "  Actual: 0x1");
4061 }
4062 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4063 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4064   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4065 
4066 # ifndef __BORLANDC__
4067 
4068   // ICE's in C++Builder 2007 and 2009.
4069   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4070     "Expected: (OkHRESULTSuccess()) fails.\n"
4071     "  Actual: 0x0");
4072 # endif
4073 
4074   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4075     "Expected: (FalseHRESULTSuccess()) fails.\n"
4076     "  Actual: 0x1");
4077 }
4078 
4079 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4080 TEST(HRESULTAssertionTest, Streaming) {
4081   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4082   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4083   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4084   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4085 
4086   EXPECT_NONFATAL_FAILURE(
4087       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4088       "expected failure");
4089 
4090 # ifndef __BORLANDC__
4091 
4092   // ICE's in C++Builder 2007 and 2009.
4093   EXPECT_FATAL_FAILURE(
4094       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4095       "expected failure");
4096 # endif
4097 
4098   EXPECT_NONFATAL_FAILURE(
4099       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4100       "expected failure");
4101 
4102   EXPECT_FATAL_FAILURE(
4103       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4104       "expected failure");
4105 }
4106 
4107 #endif  // GTEST_OS_WINDOWS
4108 
4109 #ifdef __BORLANDC__
4110 // Silences warnings: "Condition is always true", "Unreachable code"
4111 # pragma option push -w-ccc -w-rch
4112 #endif
4113 
4114 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4115 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4116   if (AlwaysFalse())
4117     ASSERT_TRUE(false) << "This should never be executed; "
4118                           "It's a compilation test only.";
4119 
4120   if (AlwaysTrue())
4121     EXPECT_FALSE(false);
4122   else
4123     ;  // NOLINT
4124 
4125   if (AlwaysFalse())
4126     ASSERT_LT(1, 3);
4127 
4128   if (AlwaysFalse())
4129     ;  // NOLINT
4130   else
4131     EXPECT_GT(3, 2) << "";
4132 }
4133 
4134 #if GTEST_HAS_EXCEPTIONS
4135 // Tests that the compiler will not complain about unreachable code in the
4136 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4137 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4138   int n = 0;
4139 
4140   EXPECT_THROW(throw 1, int);
4141   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4142   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4143   EXPECT_NO_THROW(n++);
4144   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4145   EXPECT_ANY_THROW(throw 1);
4146   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4147 }
4148 
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4149 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4150   if (AlwaysFalse())
4151     EXPECT_THROW(ThrowNothing(), bool);
4152 
4153   if (AlwaysTrue())
4154     EXPECT_THROW(ThrowAnInteger(), int);
4155   else
4156     ;  // NOLINT
4157 
4158   if (AlwaysFalse())
4159     EXPECT_NO_THROW(ThrowAnInteger());
4160 
4161   if (AlwaysTrue())
4162     EXPECT_NO_THROW(ThrowNothing());
4163   else
4164     ;  // NOLINT
4165 
4166   if (AlwaysFalse())
4167     EXPECT_ANY_THROW(ThrowNothing());
4168 
4169   if (AlwaysTrue())
4170     EXPECT_ANY_THROW(ThrowAnInteger());
4171   else
4172     ;  // NOLINT
4173 }
4174 #endif  // GTEST_HAS_EXCEPTIONS
4175 
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4176 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4177   if (AlwaysFalse())
4178     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4179                                     << "It's a compilation test only.";
4180   else
4181     ;  // NOLINT
4182 
4183   if (AlwaysFalse())
4184     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4185   else
4186     ;  // NOLINT
4187 
4188   if (AlwaysTrue())
4189     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4190   else
4191     ;  // NOLINT
4192 
4193   if (AlwaysFalse())
4194     ;  // NOLINT
4195   else
4196     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4197 }
4198 
4199 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4200 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4201   switch (0) {
4202     case 1:
4203       break;
4204     default:
4205       ASSERT_TRUE(true);
4206   }
4207 
4208   switch (0)
4209     case 0:
4210       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4211 
4212   // Binary assertions are implemented using a different code path
4213   // than the Boolean assertions.  Hence we test them separately.
4214   switch (0) {
4215     case 1:
4216     default:
4217       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4218   }
4219 
4220   switch (0)
4221     case 0:
4222       EXPECT_NE(1, 2);
4223 }
4224 
4225 #if GTEST_HAS_EXCEPTIONS
4226 
ThrowAString()4227 void ThrowAString() {
4228     throw "std::string";
4229 }
4230 
4231 // Test that the exception assertion macros compile and work with const
4232 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4233 TEST(AssertionSyntaxTest, WorksWithConst) {
4234     ASSERT_THROW(ThrowAString(), const char*);
4235 
4236     EXPECT_THROW(ThrowAString(), const char*);
4237 }
4238 
4239 #endif  // GTEST_HAS_EXCEPTIONS
4240 
4241 }  // namespace
4242 
4243 namespace testing {
4244 
4245 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4246 TEST(SuccessfulAssertionTest, SUCCEED) {
4247   SUCCEED();
4248   SUCCEED() << "OK";
4249   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4250 }
4251 
4252 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4253 TEST(SuccessfulAssertionTest, EXPECT) {
4254   EXPECT_TRUE(true);
4255   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4256 }
4257 
4258 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4259 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4260   EXPECT_STREQ("", "");
4261   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4262 }
4263 
4264 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4265 TEST(SuccessfulAssertionTest, ASSERT) {
4266   ASSERT_TRUE(true);
4267   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4268 }
4269 
4270 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4271 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4272   ASSERT_STREQ("", "");
4273   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4274 }
4275 
4276 }  // namespace testing
4277 
4278 namespace {
4279 
4280 // Tests the message streaming variation of assertions.
4281 
TEST(AssertionWithMessageTest,EXPECT)4282 TEST(AssertionWithMessageTest, EXPECT) {
4283   EXPECT_EQ(1, 1) << "This should succeed.";
4284   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4285                           "Expected failure #1");
4286   EXPECT_LE(1, 2) << "This should succeed.";
4287   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4288                           "Expected failure #2.");
4289   EXPECT_GE(1, 0) << "This should succeed.";
4290   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4291                           "Expected failure #3.");
4292 
4293   EXPECT_STREQ("1", "1") << "This should succeed.";
4294   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4295                           "Expected failure #4.");
4296   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4297   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4298                           "Expected failure #5.");
4299 
4300   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4301   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4302                           "Expected failure #6.");
4303   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4304 }
4305 
TEST(AssertionWithMessageTest,ASSERT)4306 TEST(AssertionWithMessageTest, ASSERT) {
4307   ASSERT_EQ(1, 1) << "This should succeed.";
4308   ASSERT_NE(1, 2) << "This should succeed.";
4309   ASSERT_LE(1, 2) << "This should succeed.";
4310   ASSERT_LT(1, 2) << "This should succeed.";
4311   ASSERT_GE(1, 0) << "This should succeed.";
4312   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4313                        "Expected failure.");
4314 }
4315 
TEST(AssertionWithMessageTest,ASSERT_STR)4316 TEST(AssertionWithMessageTest, ASSERT_STR) {
4317   ASSERT_STREQ("1", "1") << "This should succeed.";
4318   ASSERT_STRNE("1", "2") << "This should succeed.";
4319   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4320   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4321                        "Expected failure.");
4322 }
4323 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4324 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4325   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4326   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4327   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4328                        "Expect failure.");
4329   // To work around a bug in gcc 2.95.0, there is intentionally no
4330   // space after the first comma in the previous statement.
4331 }
4332 
4333 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4334 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4335   ASSERT_FALSE(false) << "This shouldn't fail.";
4336   EXPECT_FATAL_FAILURE({  // NOLINT
4337     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4338                        << " evaluates to " << true;
4339   }, "Expected failure");
4340 }
4341 
4342 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4343 TEST(AssertionWithMessageTest, FAIL) {
4344   EXPECT_FATAL_FAILURE(FAIL() << 0,
4345                        "0");
4346 }
4347 
4348 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4349 TEST(AssertionWithMessageTest, SUCCEED) {
4350   SUCCEED() << "Success == " << 1;
4351 }
4352 
4353 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4354 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4355   ASSERT_TRUE(true) << "This should succeed.";
4356   ASSERT_TRUE(true) << true;
4357   EXPECT_FATAL_FAILURE(
4358       {  // NOLINT
4359         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4360                            << static_cast<char*>(nullptr);
4361       },
4362       "(null)(null)");
4363 }
4364 
4365 #if GTEST_OS_WINDOWS
4366 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4367 TEST(AssertionWithMessageTest, WideStringMessage) {
4368   EXPECT_NONFATAL_FAILURE({  // NOLINT
4369     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4370   }, "This failure is expected.");
4371   EXPECT_FATAL_FAILURE({  // NOLINT
4372     ASSERT_EQ(1, 2) << "This failure is "
4373                     << L"expected too.\x8120";
4374   }, "This failure is expected too.");
4375 }
4376 #endif  // GTEST_OS_WINDOWS
4377 
4378 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4379 TEST(ExpectTest, EXPECT_TRUE) {
4380   EXPECT_TRUE(true) << "Intentional success";
4381   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4382                           "Intentional failure #1.");
4383   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4384                           "Intentional failure #2.");
4385   EXPECT_TRUE(2 > 1);  // NOLINT
4386   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4387                           "Value of: 2 < 1\n"
4388                           "  Actual: false\n"
4389                           "Expected: true");
4390   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4391                           "2 > 3");
4392 }
4393 
4394 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4395 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4396   EXPECT_TRUE(ResultIsEven(2));
4397   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4398                           "Value of: ResultIsEven(3)\n"
4399                           "  Actual: false (3 is odd)\n"
4400                           "Expected: true");
4401   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4402   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4403                           "Value of: ResultIsEvenNoExplanation(3)\n"
4404                           "  Actual: false (3 is odd)\n"
4405                           "Expected: true");
4406 }
4407 
4408 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4409 TEST(ExpectTest, EXPECT_FALSE) {
4410   EXPECT_FALSE(2 < 1);  // NOLINT
4411   EXPECT_FALSE(false) << "Intentional success";
4412   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4413                           "Intentional failure #1.");
4414   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4415                           "Intentional failure #2.");
4416   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4417                           "Value of: 2 > 1\n"
4418                           "  Actual: true\n"
4419                           "Expected: false");
4420   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4421                           "2 < 3");
4422 }
4423 
4424 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4425 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4426   EXPECT_FALSE(ResultIsEven(3));
4427   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4428                           "Value of: ResultIsEven(2)\n"
4429                           "  Actual: true (2 is even)\n"
4430                           "Expected: false");
4431   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4432   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4433                           "Value of: ResultIsEvenNoExplanation(2)\n"
4434                           "  Actual: true\n"
4435                           "Expected: false");
4436 }
4437 
4438 #ifdef __BORLANDC__
4439 // Restores warnings after previous "#pragma option push" suppressed them
4440 # pragma option pop
4441 #endif
4442 
4443 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4444 TEST(ExpectTest, EXPECT_EQ) {
4445   EXPECT_EQ(5, 2 + 3);
4446   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4447                           "Expected equality of these values:\n"
4448                           "  5\n"
4449                           "  2*3\n"
4450                           "    Which is: 6");
4451   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4452                           "2 - 3");
4453 }
4454 
4455 // Tests using EXPECT_EQ on double values.  The purpose is to make
4456 // sure that the specialization we did for integer and anonymous enums
4457 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4458 TEST(ExpectTest, EXPECT_EQ_Double) {
4459   // A success.
4460   EXPECT_EQ(5.6, 5.6);
4461 
4462   // A failure.
4463   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4464                           "5.1");
4465 }
4466 
4467 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4468 TEST(ExpectTest, EXPECT_EQ_NULL) {
4469   // A success.
4470   const char* p = nullptr;
4471   // Some older GCC versions may issue a spurious warning in this or the next
4472   // assertion statement. This warning should not be suppressed with
4473   // static_cast since the test verifies the ability to use bare NULL as the
4474   // expected parameter to the macro.
4475   EXPECT_EQ(nullptr, p);
4476 
4477   // A failure.
4478   int n = 0;
4479   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4480 }
4481 
4482 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4483 // treated as a null pointer by the compiler, we need to make sure
4484 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4485 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4486 TEST(ExpectTest, EXPECT_EQ_0) {
4487   int n = 0;
4488 
4489   // A success.
4490   EXPECT_EQ(0, n);
4491 
4492   // A failure.
4493   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4494                           "  0\n  5.6");
4495 }
4496 
4497 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4498 TEST(ExpectTest, EXPECT_NE) {
4499   EXPECT_NE(6, 7);
4500 
4501   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4502                           "Expected: ('a') != ('a'), "
4503                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4504   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4505                           "2");
4506   char* const p0 = nullptr;
4507   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4508                           "p0");
4509   // Only way to get the Nokia compiler to compile the cast
4510   // is to have a separate void* variable first. Putting
4511   // the two casts on the same line doesn't work, neither does
4512   // a direct C-style to char*.
4513   void* pv1 = (void*)0x1234;  // NOLINT
4514   char* const p1 = reinterpret_cast<char*>(pv1);
4515   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4516                           "p1");
4517 }
4518 
4519 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4520 TEST(ExpectTest, EXPECT_LE) {
4521   EXPECT_LE(2, 3);
4522   EXPECT_LE(2, 2);
4523   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4524                           "Expected: (2) <= (0), actual: 2 vs 0");
4525   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4526                           "(1.1) <= (0.9)");
4527 }
4528 
4529 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4530 TEST(ExpectTest, EXPECT_LT) {
4531   EXPECT_LT(2, 3);
4532   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4533                           "Expected: (2) < (2), actual: 2 vs 2");
4534   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4535                           "(2) < (1)");
4536 }
4537 
4538 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4539 TEST(ExpectTest, EXPECT_GE) {
4540   EXPECT_GE(2, 1);
4541   EXPECT_GE(2, 2);
4542   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4543                           "Expected: (2) >= (3), actual: 2 vs 3");
4544   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4545                           "(0.9) >= (1.1)");
4546 }
4547 
4548 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4549 TEST(ExpectTest, EXPECT_GT) {
4550   EXPECT_GT(2, 1);
4551   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4552                           "Expected: (2) > (2), actual: 2 vs 2");
4553   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4554                           "(2) > (3)");
4555 }
4556 
4557 #if GTEST_HAS_EXCEPTIONS
4558 
4559 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4560 TEST(ExpectTest, EXPECT_THROW) {
4561   EXPECT_THROW(ThrowAnInteger(), int);
4562   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4563                           "Expected: ThrowAnInteger() throws an exception of "
4564                           "type bool.\n  Actual: it throws a different type.");
4565   EXPECT_NONFATAL_FAILURE(
4566       EXPECT_THROW(ThrowNothing(), bool),
4567       "Expected: ThrowNothing() throws an exception of type bool.\n"
4568       "  Actual: it throws nothing.");
4569 }
4570 
4571 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4572 TEST(ExpectTest, EXPECT_NO_THROW) {
4573   EXPECT_NO_THROW(ThrowNothing());
4574   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4575                           "Expected: ThrowAnInteger() doesn't throw an "
4576                           "exception.\n  Actual: it throws.");
4577 }
4578 
4579 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4580 TEST(ExpectTest, EXPECT_ANY_THROW) {
4581   EXPECT_ANY_THROW(ThrowAnInteger());
4582   EXPECT_NONFATAL_FAILURE(
4583       EXPECT_ANY_THROW(ThrowNothing()),
4584       "Expected: ThrowNothing() throws an exception.\n"
4585       "  Actual: it doesn't.");
4586 }
4587 
4588 #endif  // GTEST_HAS_EXCEPTIONS
4589 
4590 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4591 TEST(ExpectTest, ExpectPrecedence) {
4592   EXPECT_EQ(1 < 2, true);
4593   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4594                           "  true && false\n    Which is: false");
4595 }
4596 
4597 
4598 // Tests the StreamableToString() function.
4599 
4600 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4601 TEST(StreamableToStringTest, Scalar) {
4602   EXPECT_STREQ("5", StreamableToString(5).c_str());
4603 }
4604 
4605 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4606 TEST(StreamableToStringTest, Pointer) {
4607   int n = 0;
4608   int* p = &n;
4609   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4610 }
4611 
4612 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4613 TEST(StreamableToStringTest, NullPointer) {
4614   int* p = nullptr;
4615   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4616 }
4617 
4618 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4619 TEST(StreamableToStringTest, CString) {
4620   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4621 }
4622 
4623 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4624 TEST(StreamableToStringTest, NullCString) {
4625   char* p = nullptr;
4626   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4627 }
4628 
4629 // Tests using streamable values as assertion messages.
4630 
4631 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4632 TEST(StreamableTest, string) {
4633   static const std::string str(
4634       "This failure message is a std::string, and is expected.");
4635   EXPECT_FATAL_FAILURE(FAIL() << str,
4636                        str.c_str());
4637 }
4638 
4639 // Tests that we can output strings containing embedded NULs.
4640 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4641 TEST(StreamableTest, stringWithEmbeddedNUL) {
4642   static const char char_array_with_nul[] =
4643       "Here's a NUL\0 and some more string";
4644   static const std::string string_with_nul(char_array_with_nul,
4645                                            sizeof(char_array_with_nul)
4646                                            - 1);  // drops the trailing NUL
4647   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4648                        "Here's a NUL\\0 and some more string");
4649 }
4650 
4651 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4652 TEST(StreamableTest, NULChar) {
4653   EXPECT_FATAL_FAILURE({  // NOLINT
4654     FAIL() << "A NUL" << '\0' << " and some more string";
4655   }, "A NUL\\0 and some more string");
4656 }
4657 
4658 // Tests using int as an assertion message.
TEST(StreamableTest,int)4659 TEST(StreamableTest, int) {
4660   EXPECT_FATAL_FAILURE(FAIL() << 900913,
4661                        "900913");
4662 }
4663 
4664 // Tests using NULL char pointer as an assertion message.
4665 //
4666 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4667 // implemented a workaround (substituting "(null)" for NULL).  This
4668 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4669 TEST(StreamableTest, NullCharPtr) {
4670   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4671 }
4672 
4673 // Tests that basic IO manipulators (endl, ends, and flush) can be
4674 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4675 TEST(StreamableTest, BasicIoManip) {
4676   EXPECT_FATAL_FAILURE({  // NOLINT
4677     FAIL() << "Line 1." << std::endl
4678            << "A NUL char " << std::ends << std::flush << " in line 2.";
4679   }, "Line 1.\nA NUL char \\0 in line 2.");
4680 }
4681 
4682 // Tests the macros that haven't been covered so far.
4683 
AddFailureHelper(bool * aborted)4684 void AddFailureHelper(bool* aborted) {
4685   *aborted = true;
4686   ADD_FAILURE() << "Intentional failure.";
4687   *aborted = false;
4688 }
4689 
4690 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4691 TEST(MacroTest, ADD_FAILURE) {
4692   bool aborted = true;
4693   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4694                           "Intentional failure.");
4695   EXPECT_FALSE(aborted);
4696 }
4697 
4698 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4699 TEST(MacroTest, ADD_FAILURE_AT) {
4700   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4701   // the failure message contains the user-streamed part.
4702   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4703 
4704   // Verifies that the user-streamed part is optional.
4705   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4706 
4707   // Unfortunately, we cannot verify that the failure message contains
4708   // the right file path and line number the same way, as
4709   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4710   // line number.  Instead, we do that in googletest-output-test_.cc.
4711 }
4712 
4713 // Tests FAIL.
TEST(MacroTest,FAIL)4714 TEST(MacroTest, FAIL) {
4715   EXPECT_FATAL_FAILURE(FAIL(),
4716                        "Failed");
4717   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4718                        "Intentional failure.");
4719 }
4720 
4721 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4722 TEST(MacroTest, SUCCEED) {
4723   SUCCEED();
4724   SUCCEED() << "Explicit success.";
4725 }
4726 
4727 // Tests for EXPECT_EQ() and ASSERT_EQ().
4728 //
4729 // These tests fail *intentionally*, s.t. the failure messages can be
4730 // generated and tested.
4731 //
4732 // We have different tests for different argument types.
4733 
4734 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4735 TEST(EqAssertionTest, Bool) {
4736   EXPECT_EQ(true,  true);
4737   EXPECT_FATAL_FAILURE({
4738       bool false_value = false;
4739       ASSERT_EQ(false_value, true);
4740     }, "  false_value\n    Which is: false\n  true");
4741 }
4742 
4743 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4744 TEST(EqAssertionTest, Int) {
4745   ASSERT_EQ(32, 32);
4746   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4747                           "  32\n  33");
4748 }
4749 
4750 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4751 TEST(EqAssertionTest, Time_T) {
4752   EXPECT_EQ(static_cast<time_t>(0),
4753             static_cast<time_t>(0));
4754   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4755                                  static_cast<time_t>(1234)),
4756                        "1234");
4757 }
4758 
4759 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4760 TEST(EqAssertionTest, Char) {
4761   ASSERT_EQ('z', 'z');
4762   const char ch = 'b';
4763   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4764                           "  ch\n    Which is: 'b'");
4765   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4766                           "  ch\n    Which is: 'b'");
4767 }
4768 
4769 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4770 TEST(EqAssertionTest, WideChar) {
4771   EXPECT_EQ(L'b', L'b');
4772 
4773   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4774                           "Expected equality of these values:\n"
4775                           "  L'\0'\n"
4776                           "    Which is: L'\0' (0, 0x0)\n"
4777                           "  L'x'\n"
4778                           "    Which is: L'x' (120, 0x78)");
4779 
4780   static wchar_t wchar;
4781   wchar = L'b';
4782   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4783                           "wchar");
4784   wchar = 0x8119;
4785   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4786                        "  wchar\n    Which is: L'");
4787 }
4788 
4789 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4790 TEST(EqAssertionTest, StdString) {
4791   // Compares a const char* to an std::string that has identical
4792   // content.
4793   ASSERT_EQ("Test", ::std::string("Test"));
4794 
4795   // Compares two identical std::strings.
4796   static const ::std::string str1("A * in the middle");
4797   static const ::std::string str2(str1);
4798   EXPECT_EQ(str1, str2);
4799 
4800   // Compares a const char* to an std::string that has different
4801   // content
4802   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4803                           "\"test\"");
4804 
4805   // Compares an std::string to a char* that has different content.
4806   char* const p1 = const_cast<char*>("foo");
4807   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4808                           "p1");
4809 
4810   // Compares two std::strings that have different contents, one of
4811   // which having a NUL character in the middle.  This should fail.
4812   static ::std::string str3(str1);
4813   str3.at(2) = '\0';
4814   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4815                        "  str3\n    Which is: \"A \\0 in the middle\"");
4816 }
4817 
4818 #if GTEST_HAS_STD_WSTRING
4819 
4820 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4821 TEST(EqAssertionTest, StdWideString) {
4822   // Compares two identical std::wstrings.
4823   const ::std::wstring wstr1(L"A * in the middle");
4824   const ::std::wstring wstr2(wstr1);
4825   ASSERT_EQ(wstr1, wstr2);
4826 
4827   // Compares an std::wstring to a const wchar_t* that has identical
4828   // content.
4829   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4830   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4831 
4832   // Compares an std::wstring to a const wchar_t* that has different
4833   // content.
4834   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4835   EXPECT_NONFATAL_FAILURE({  // NOLINT
4836     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4837   }, "kTestX8120");
4838 
4839   // Compares two std::wstrings that have different contents, one of
4840   // which having a NUL character in the middle.
4841   ::std::wstring wstr3(wstr1);
4842   wstr3.at(2) = L'\0';
4843   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4844                           "wstr3");
4845 
4846   // Compares a wchar_t* to an std::wstring that has different
4847   // content.
4848   EXPECT_FATAL_FAILURE({  // NOLINT
4849     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4850   }, "");
4851 }
4852 
4853 #endif  // GTEST_HAS_STD_WSTRING
4854 
4855 #if GTEST_HAS_GLOBAL_STRING
4856 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalString)4857 TEST(EqAssertionTest, GlobalString) {
4858   // Compares a const char* to a ::string that has identical content.
4859   EXPECT_EQ("Test", ::string("Test"));
4860 
4861   // Compares two identical ::strings.
4862   const ::string str1("A * in the middle");
4863   const ::string str2(str1);
4864   ASSERT_EQ(str1, str2);
4865 
4866   // Compares a ::string to a const char* that has different content.
4867   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4868                           "test");
4869 
4870   // Compares two ::strings that have different contents, one of which
4871   // having a NUL character in the middle.
4872   ::string str3(str1);
4873   str3.at(2) = '\0';
4874   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4875                           "str3");
4876 
4877   // Compares a ::string to a char* that has different content.
4878   EXPECT_FATAL_FAILURE({  // NOLINT
4879     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4880   }, "");
4881 }
4882 
4883 #endif  // GTEST_HAS_GLOBAL_STRING
4884 
4885 #if GTEST_HAS_GLOBAL_WSTRING
4886 
4887 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalWideString)4888 TEST(EqAssertionTest, GlobalWideString) {
4889   // Compares two identical ::wstrings.
4890   static const ::wstring wstr1(L"A * in the middle");
4891   static const ::wstring wstr2(wstr1);
4892   EXPECT_EQ(wstr1, wstr2);
4893 
4894   // Compares a const wchar_t* to a ::wstring that has identical content.
4895   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4896   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4897 
4898   // Compares a const wchar_t* to a ::wstring that has different
4899   // content.
4900   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4901   EXPECT_NONFATAL_FAILURE({  // NOLINT
4902     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4903   }, "Test\\x8119");
4904 
4905   // Compares a wchar_t* to a ::wstring that has different content.
4906   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4907   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4908                           "bar");
4909 
4910   // Compares two ::wstrings that have different contents, one of which
4911   // having a NUL character in the middle.
4912   static ::wstring wstr3;
4913   wstr3 = wstr1;
4914   wstr3.at(2) = L'\0';
4915   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4916                        "wstr3");
4917 }
4918 
4919 #endif  // GTEST_HAS_GLOBAL_WSTRING
4920 
4921 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4922 TEST(EqAssertionTest, CharPointer) {
4923   char* const p0 = nullptr;
4924   // Only way to get the Nokia compiler to compile the cast
4925   // is to have a separate void* variable first. Putting
4926   // the two casts on the same line doesn't work, neither does
4927   // a direct C-style to char*.
4928   void* pv1 = (void*)0x1234;  // NOLINT
4929   void* pv2 = (void*)0xABC0;  // NOLINT
4930   char* const p1 = reinterpret_cast<char*>(pv1);
4931   char* const p2 = reinterpret_cast<char*>(pv2);
4932   ASSERT_EQ(p1, p1);
4933 
4934   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4935                           "  p2\n    Which is:");
4936   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4937                           "  p2\n    Which is:");
4938   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4939                                  reinterpret_cast<char*>(0xABC0)),
4940                        "ABC0");
4941 }
4942 
4943 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4944 TEST(EqAssertionTest, WideCharPointer) {
4945   wchar_t* const p0 = nullptr;
4946   // Only way to get the Nokia compiler to compile the cast
4947   // is to have a separate void* variable first. Putting
4948   // the two casts on the same line doesn't work, neither does
4949   // a direct C-style to char*.
4950   void* pv1 = (void*)0x1234;  // NOLINT
4951   void* pv2 = (void*)0xABC0;  // NOLINT
4952   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4953   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4954   EXPECT_EQ(p0, p0);
4955 
4956   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4957                           "  p2\n    Which is:");
4958   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4959                           "  p2\n    Which is:");
4960   void* pv3 = (void*)0x1234;  // NOLINT
4961   void* pv4 = (void*)0xABC0;  // NOLINT
4962   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4963   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4964   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4965                           "p4");
4966 }
4967 
4968 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4969 TEST(EqAssertionTest, OtherPointer) {
4970   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4971   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4972                                  reinterpret_cast<const int*>(0x1234)),
4973                        "0x1234");
4974 }
4975 
4976 // A class that supports binary comparison operators but not streaming.
4977 class UnprintableChar {
4978  public:
UnprintableChar(char ch)4979   explicit UnprintableChar(char ch) : char_(ch) {}
4980 
operator ==(const UnprintableChar & rhs) const4981   bool operator==(const UnprintableChar& rhs) const {
4982     return char_ == rhs.char_;
4983   }
operator !=(const UnprintableChar & rhs) const4984   bool operator!=(const UnprintableChar& rhs) const {
4985     return char_ != rhs.char_;
4986   }
operator <(const UnprintableChar & rhs) const4987   bool operator<(const UnprintableChar& rhs) const {
4988     return char_ < rhs.char_;
4989   }
operator <=(const UnprintableChar & rhs) const4990   bool operator<=(const UnprintableChar& rhs) const {
4991     return char_ <= rhs.char_;
4992   }
operator >(const UnprintableChar & rhs) const4993   bool operator>(const UnprintableChar& rhs) const {
4994     return char_ > rhs.char_;
4995   }
operator >=(const UnprintableChar & rhs) const4996   bool operator>=(const UnprintableChar& rhs) const {
4997     return char_ >= rhs.char_;
4998   }
4999 
5000  private:
5001   char char_;
5002 };
5003 
5004 // Tests that ASSERT_EQ() and friends don't require the arguments to
5005 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)5006 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
5007   const UnprintableChar x('x'), y('y');
5008   ASSERT_EQ(x, x);
5009   EXPECT_NE(x, y);
5010   ASSERT_LT(x, y);
5011   EXPECT_LE(x, y);
5012   ASSERT_GT(y, x);
5013   EXPECT_GE(x, x);
5014 
5015   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
5016   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
5017   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
5018   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
5019   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
5020 
5021   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
5022   // variables, so we have to write UnprintableChar('x') instead of x.
5023 #ifndef __BORLANDC__
5024   // ICE's in C++Builder.
5025   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
5026                        "1-byte object <78>");
5027   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5028                        "1-byte object <78>");
5029 #endif
5030   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5031                        "1-byte object <79>");
5032   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5033                        "1-byte object <78>");
5034   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5035                        "1-byte object <79>");
5036 }
5037 
5038 // Tests the FRIEND_TEST macro.
5039 
5040 // This class has a private member we want to test.  We will test it
5041 // both in a TEST and in a TEST_F.
5042 class Foo {
5043  public:
Foo()5044   Foo() {}
5045 
5046  private:
Bar() const5047   int Bar() const { return 1; }
5048 
5049   // Declares the friend tests that can access the private member
5050   // Bar().
5051   FRIEND_TEST(FRIEND_TEST_Test, TEST);
5052   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5053 };
5054 
5055 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5056 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)5057 TEST(FRIEND_TEST_Test, TEST) {
5058   ASSERT_EQ(1, Foo().Bar());
5059 }
5060 
5061 // The fixture needed to test using FRIEND_TEST with TEST_F.
5062 class FRIEND_TEST_Test2 : public Test {
5063  protected:
5064   Foo foo;
5065 };
5066 
5067 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5068 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5069 TEST_F(FRIEND_TEST_Test2, TEST_F) {
5070   ASSERT_EQ(1, foo.Bar());
5071 }
5072 
5073 // Tests the life cycle of Test objects.
5074 
5075 // The test fixture for testing the life cycle of Test objects.
5076 //
5077 // This class counts the number of live test objects that uses this
5078 // fixture.
5079 class TestLifeCycleTest : public Test {
5080  protected:
5081   // Constructor.  Increments the number of test objects that uses
5082   // this fixture.
TestLifeCycleTest()5083   TestLifeCycleTest() { count_++; }
5084 
5085   // Destructor.  Decrements the number of test objects that uses this
5086   // fixture.
~TestLifeCycleTest()5087   ~TestLifeCycleTest() override { count_--; }
5088 
5089   // Returns the number of live test objects that uses this fixture.
count() const5090   int count() const { return count_; }
5091 
5092  private:
5093   static int count_;
5094 };
5095 
5096 int TestLifeCycleTest::count_ = 0;
5097 
5098 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5099 TEST_F(TestLifeCycleTest, Test1) {
5100   // There should be only one test object in this test case that's
5101   // currently alive.
5102   ASSERT_EQ(1, count());
5103 }
5104 
5105 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5106 TEST_F(TestLifeCycleTest, Test2) {
5107   // After Test1 is done and Test2 is started, there should still be
5108   // only one live test object, as the object for Test1 should've been
5109   // deleted.
5110   ASSERT_EQ(1, count());
5111 }
5112 
5113 }  // namespace
5114 
5115 // Tests that the copy constructor works when it is NOT optimized away by
5116 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5117 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5118   // Checks that the copy constructor doesn't try to dereference NULL pointers
5119   // in the source object.
5120   AssertionResult r1 = AssertionSuccess();
5121   AssertionResult r2 = r1;
5122   // The following line is added to prevent the compiler from optimizing
5123   // away the constructor call.
5124   r1 << "abc";
5125 
5126   AssertionResult r3 = r1;
5127   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5128   EXPECT_STREQ("abc", r1.message());
5129 }
5130 
5131 // Tests that AssertionSuccess and AssertionFailure construct
5132 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5133 TEST(AssertionResultTest, ConstructionWorks) {
5134   AssertionResult r1 = AssertionSuccess();
5135   EXPECT_TRUE(r1);
5136   EXPECT_STREQ("", r1.message());
5137 
5138   AssertionResult r2 = AssertionSuccess() << "abc";
5139   EXPECT_TRUE(r2);
5140   EXPECT_STREQ("abc", r2.message());
5141 
5142   AssertionResult r3 = AssertionFailure();
5143   EXPECT_FALSE(r3);
5144   EXPECT_STREQ("", r3.message());
5145 
5146   AssertionResult r4 = AssertionFailure() << "def";
5147   EXPECT_FALSE(r4);
5148   EXPECT_STREQ("def", r4.message());
5149 
5150   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5151   EXPECT_FALSE(r5);
5152   EXPECT_STREQ("ghi", r5.message());
5153 }
5154 
5155 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5156 TEST(AssertionResultTest, NegationWorks) {
5157   AssertionResult r1 = AssertionSuccess() << "abc";
5158   EXPECT_FALSE(!r1);
5159   EXPECT_STREQ("abc", (!r1).message());
5160 
5161   AssertionResult r2 = AssertionFailure() << "def";
5162   EXPECT_TRUE(!r2);
5163   EXPECT_STREQ("def", (!r2).message());
5164 }
5165 
TEST(AssertionResultTest,StreamingWorks)5166 TEST(AssertionResultTest, StreamingWorks) {
5167   AssertionResult r = AssertionSuccess();
5168   r << "abc" << 'd' << 0 << true;
5169   EXPECT_STREQ("abcd0true", r.message());
5170 }
5171 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5172 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5173   AssertionResult r = AssertionSuccess();
5174   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5175   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5176 }
5177 
5178 // The next test uses explicit conversion operators
5179 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5180 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5181   struct ExplicitlyConvertibleToBool {
5182     explicit operator bool() const { return value; }
5183     bool value;
5184   };
5185   ExplicitlyConvertibleToBool v1 = {false};
5186   ExplicitlyConvertibleToBool v2 = {true};
5187   EXPECT_FALSE(v1);
5188   EXPECT_TRUE(v2);
5189 }
5190 
5191 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5192   operator AssertionResult() const { return AssertionResult(true); }
5193 };
5194 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5195 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5196   ConvertibleToAssertionResult obj;
5197   EXPECT_TRUE(obj);
5198 }
5199 
5200 // Tests streaming a user type whose definition and operator << are
5201 // both in the global namespace.
5202 class Base {
5203  public:
Base(int an_x)5204   explicit Base(int an_x) : x_(an_x) {}
x() const5205   int x() const { return x_; }
5206  private:
5207   int x_;
5208 };
operator <<(std::ostream & os,const Base & val)5209 std::ostream& operator<<(std::ostream& os,
5210                          const Base& val) {
5211   return os << val.x();
5212 }
operator <<(std::ostream & os,const Base * pointer)5213 std::ostream& operator<<(std::ostream& os,
5214                          const Base* pointer) {
5215   return os << "(" << pointer->x() << ")";
5216 }
5217 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5218 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5219   Message msg;
5220   Base a(1);
5221 
5222   msg << a << &a;  // Uses ::operator<<.
5223   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5224 }
5225 
5226 // Tests streaming a user type whose definition and operator<< are
5227 // both in an unnamed namespace.
5228 namespace {
5229 class MyTypeInUnnamedNameSpace : public Base {
5230  public:
MyTypeInUnnamedNameSpace(int an_x)5231   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5232 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5233 std::ostream& operator<<(std::ostream& os,
5234                          const MyTypeInUnnamedNameSpace& val) {
5235   return os << val.x();
5236 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5237 std::ostream& operator<<(std::ostream& os,
5238                          const MyTypeInUnnamedNameSpace* pointer) {
5239   return os << "(" << pointer->x() << ")";
5240 }
5241 }  // namespace
5242 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5243 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5244   Message msg;
5245   MyTypeInUnnamedNameSpace a(1);
5246 
5247   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5248   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5249 }
5250 
5251 // Tests streaming a user type whose definition and operator<< are
5252 // both in a user namespace.
5253 namespace namespace1 {
5254 class MyTypeInNameSpace1 : public Base {
5255  public:
MyTypeInNameSpace1(int an_x)5256   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5257 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5258 std::ostream& operator<<(std::ostream& os,
5259                          const MyTypeInNameSpace1& val) {
5260   return os << val.x();
5261 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5262 std::ostream& operator<<(std::ostream& os,
5263                          const MyTypeInNameSpace1* pointer) {
5264   return os << "(" << pointer->x() << ")";
5265 }
5266 }  // namespace namespace1
5267 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5268 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5269   Message msg;
5270   namespace1::MyTypeInNameSpace1 a(1);
5271 
5272   msg << a << &a;  // Uses namespace1::operator<<.
5273   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5274 }
5275 
5276 // Tests streaming a user type whose definition is in a user namespace
5277 // but whose operator<< is in the global namespace.
5278 namespace namespace2 {
5279 class MyTypeInNameSpace2 : public ::Base {
5280  public:
MyTypeInNameSpace2(int an_x)5281   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5282 };
5283 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5284 std::ostream& operator<<(std::ostream& os,
5285                          const namespace2::MyTypeInNameSpace2& val) {
5286   return os << val.x();
5287 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5288 std::ostream& operator<<(std::ostream& os,
5289                          const namespace2::MyTypeInNameSpace2* pointer) {
5290   return os << "(" << pointer->x() << ")";
5291 }
5292 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5293 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5294   Message msg;
5295   namespace2::MyTypeInNameSpace2 a(1);
5296 
5297   msg << a << &a;  // Uses ::operator<<.
5298   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5299 }
5300 
5301 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5302 TEST(MessageTest, NullPointers) {
5303   Message msg;
5304   char* const p1 = nullptr;
5305   unsigned char* const p2 = nullptr;
5306   int* p3 = nullptr;
5307   double* p4 = nullptr;
5308   bool* p5 = nullptr;
5309   Message* p6 = nullptr;
5310 
5311   msg << p1 << p2 << p3 << p4 << p5 << p6;
5312   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5313                msg.GetString().c_str());
5314 }
5315 
5316 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5317 TEST(MessageTest, WideStrings) {
5318   // Streams a NULL of type const wchar_t*.
5319   const wchar_t* const_wstr = nullptr;
5320   EXPECT_STREQ("(null)",
5321                (Message() << const_wstr).GetString().c_str());
5322 
5323   // Streams a NULL of type wchar_t*.
5324   wchar_t* wstr = nullptr;
5325   EXPECT_STREQ("(null)",
5326                (Message() << wstr).GetString().c_str());
5327 
5328   // Streams a non-NULL of type const wchar_t*.
5329   const_wstr = L"abc\x8119";
5330   EXPECT_STREQ("abc\xe8\x84\x99",
5331                (Message() << const_wstr).GetString().c_str());
5332 
5333   // Streams a non-NULL of type wchar_t*.
5334   wstr = const_cast<wchar_t*>(const_wstr);
5335   EXPECT_STREQ("abc\xe8\x84\x99",
5336                (Message() << wstr).GetString().c_str());
5337 }
5338 
5339 
5340 // This line tests that we can define tests in the testing namespace.
5341 namespace testing {
5342 
5343 // Tests the TestInfo class.
5344 
5345 class TestInfoTest : public Test {
5346  protected:
GetTestInfo(const char * test_name)5347   static const TestInfo* GetTestInfo(const char* test_name) {
5348     const TestSuite* const test_suite =
5349         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5350 
5351     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5352       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5353       if (strcmp(test_name, test_info->name()) == 0)
5354         return test_info;
5355     }
5356     return nullptr;
5357   }
5358 
GetTestResult(const TestInfo * test_info)5359   static const TestResult* GetTestResult(
5360       const TestInfo* test_info) {
5361     return test_info->result();
5362   }
5363 };
5364 
5365 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5366 TEST_F(TestInfoTest, Names) {
5367   const TestInfo* const test_info = GetTestInfo("Names");
5368 
5369   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5370   ASSERT_STREQ("Names", test_info->name());
5371 }
5372 
5373 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5374 TEST_F(TestInfoTest, result) {
5375   const TestInfo* const test_info = GetTestInfo("result");
5376 
5377   // Initially, there is no TestPartResult for this test.
5378   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5379 
5380   // After the previous assertion, there is still none.
5381   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5382 }
5383 
5384 #define VERIFY_CODE_LOCATION \
5385   const int expected_line = __LINE__ - 1; \
5386   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5387   ASSERT_TRUE(test_info); \
5388   EXPECT_STREQ(__FILE__, test_info->file()); \
5389   EXPECT_EQ(expected_line, test_info->line())
5390 
TEST(CodeLocationForTEST,Verify)5391 TEST(CodeLocationForTEST, Verify) {
5392   VERIFY_CODE_LOCATION;
5393 }
5394 
5395 class CodeLocationForTESTF : public Test {
5396 };
5397 
TEST_F(CodeLocationForTESTF,Verify)5398 TEST_F(CodeLocationForTESTF, Verify) {
5399   VERIFY_CODE_LOCATION;
5400 }
5401 
5402 class CodeLocationForTESTP : public TestWithParam<int> {
5403 };
5404 
TEST_P(CodeLocationForTESTP,Verify)5405 TEST_P(CodeLocationForTESTP, Verify) {
5406   VERIFY_CODE_LOCATION;
5407 }
5408 
5409 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5410 
5411 template <typename T>
5412 class CodeLocationForTYPEDTEST : public Test {
5413 };
5414 
5415 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5416 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5417 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5418   VERIFY_CODE_LOCATION;
5419 }
5420 
5421 template <typename T>
5422 class CodeLocationForTYPEDTESTP : public Test {
5423 };
5424 
5425 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5426 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5427 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5428   VERIFY_CODE_LOCATION;
5429 }
5430 
5431 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5432 
5433 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5434 
5435 #undef VERIFY_CODE_LOCATION
5436 
5437 // Tests setting up and tearing down a test case.
5438 // Legacy API is deprecated but still available
5439 #ifndef REMOVE_LEGACY_TEST_CASEAPI
5440 class SetUpTestCaseTest : public Test {
5441  protected:
5442   // This will be called once before the first test in this test case
5443   // is run.
SetUpTestCase()5444   static void SetUpTestCase() {
5445     printf("Setting up the test case . . .\n");
5446 
5447     // Initializes some shared resource.  In this simple example, we
5448     // just create a C string.  More complex stuff can be done if
5449     // desired.
5450     shared_resource_ = "123";
5451 
5452     // Increments the number of test cases that have been set up.
5453     counter_++;
5454 
5455     // SetUpTestCase() should be called only once.
5456     EXPECT_EQ(1, counter_);
5457   }
5458 
5459   // This will be called once after the last test in this test case is
5460   // run.
TearDownTestCase()5461   static void TearDownTestCase() {
5462     printf("Tearing down the test case . . .\n");
5463 
5464     // Decrements the number of test cases that have been set up.
5465     counter_--;
5466 
5467     // TearDownTestCase() should be called only once.
5468     EXPECT_EQ(0, counter_);
5469 
5470     // Cleans up the shared resource.
5471     shared_resource_ = nullptr;
5472   }
5473 
5474   // This will be called before each test in this test case.
SetUp()5475   void SetUp() override {
5476     // SetUpTestCase() should be called only once, so counter_ should
5477     // always be 1.
5478     EXPECT_EQ(1, counter_);
5479   }
5480 
5481   // Number of test cases that have been set up.
5482   static int counter_;
5483 
5484   // Some resource to be shared by all tests in this test case.
5485   static const char* shared_resource_;
5486 };
5487 
5488 int SetUpTestCaseTest::counter_ = 0;
5489 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5490 
5491 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5492 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5493 
5494 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5495 TEST_F(SetUpTestCaseTest, Test2) {
5496   EXPECT_STREQ("123", shared_resource_);
5497 }
5498 #endif  //  REMOVE_LEGACY_TEST_CASEAPI
5499 
5500 // Tests SetupTestSuite/TearDown TestSuite
5501 class SetUpTestSuiteTest : public Test {
5502  protected:
5503   // This will be called once before the first test in this test case
5504   // is run.
SetUpTestSuite()5505   static void SetUpTestSuite() {
5506     printf("Setting up the test suite . . .\n");
5507 
5508     // Initializes some shared resource.  In this simple example, we
5509     // just create a C string.  More complex stuff can be done if
5510     // desired.
5511     shared_resource_ = "123";
5512 
5513     // Increments the number of test cases that have been set up.
5514     counter_++;
5515 
5516     // SetUpTestSuite() should be called only once.
5517     EXPECT_EQ(1, counter_);
5518   }
5519 
5520   // This will be called once after the last test in this test case is
5521   // run.
TearDownTestSuite()5522   static void TearDownTestSuite() {
5523     printf("Tearing down the test suite . . .\n");
5524 
5525     // Decrements the number of test suites that have been set up.
5526     counter_--;
5527 
5528     // TearDownTestSuite() should be called only once.
5529     EXPECT_EQ(0, counter_);
5530 
5531     // Cleans up the shared resource.
5532     shared_resource_ = nullptr;
5533   }
5534 
5535   // This will be called before each test in this test case.
SetUp()5536   void SetUp() override {
5537     // SetUpTestSuite() should be called only once, so counter_ should
5538     // always be 1.
5539     EXPECT_EQ(1, counter_);
5540   }
5541 
5542   // Number of test suites that have been set up.
5543   static int counter_;
5544 
5545   // Some resource to be shared by all tests in this test case.
5546   static const char* shared_resource_;
5547 };
5548 
5549 int SetUpTestSuiteTest::counter_ = 0;
5550 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5551 
5552 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5553 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5554   EXPECT_STRNE(nullptr, shared_resource_);
5555 }
5556 
5557 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5558 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5559   EXPECT_STREQ("123", shared_resource_);
5560 }
5561 
5562 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5563 
5564 // The Flags struct stores a copy of all Google Test flags.
5565 struct Flags {
5566   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5567   Flags() : also_run_disabled_tests(false),
5568             break_on_failure(false),
5569             catch_exceptions(false),
5570             death_test_use_fork(false),
5571             filter(""),
5572             list_tests(false),
5573             output(""),
5574             print_time(true),
5575             random_seed(0),
5576             repeat(1),
5577             shuffle(false),
5578             stack_trace_depth(kMaxStackTraceDepth),
5579             stream_result_to(""),
5580             throw_on_failure(false) {}
5581 
5582   // Factory methods.
5583 
5584   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5585   // the given value.
AlsoRunDisabledTeststesting::Flags5586   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5587     Flags flags;
5588     flags.also_run_disabled_tests = also_run_disabled_tests;
5589     return flags;
5590   }
5591 
5592   // Creates a Flags struct where the gtest_break_on_failure flag has
5593   // the given value.
BreakOnFailuretesting::Flags5594   static Flags BreakOnFailure(bool break_on_failure) {
5595     Flags flags;
5596     flags.break_on_failure = break_on_failure;
5597     return flags;
5598   }
5599 
5600   // Creates a Flags struct where the gtest_catch_exceptions flag has
5601   // the given value.
CatchExceptionstesting::Flags5602   static Flags CatchExceptions(bool catch_exceptions) {
5603     Flags flags;
5604     flags.catch_exceptions = catch_exceptions;
5605     return flags;
5606   }
5607 
5608   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5609   // the given value.
DeathTestUseForktesting::Flags5610   static Flags DeathTestUseFork(bool death_test_use_fork) {
5611     Flags flags;
5612     flags.death_test_use_fork = death_test_use_fork;
5613     return flags;
5614   }
5615 
5616   // Creates a Flags struct where the gtest_filter flag has the given
5617   // value.
Filtertesting::Flags5618   static Flags Filter(const char* filter) {
5619     Flags flags;
5620     flags.filter = filter;
5621     return flags;
5622   }
5623 
5624   // Creates a Flags struct where the gtest_list_tests flag has the
5625   // given value.
ListTeststesting::Flags5626   static Flags ListTests(bool list_tests) {
5627     Flags flags;
5628     flags.list_tests = list_tests;
5629     return flags;
5630   }
5631 
5632   // Creates a Flags struct where the gtest_output flag has the given
5633   // value.
Outputtesting::Flags5634   static Flags Output(const char* output) {
5635     Flags flags;
5636     flags.output = output;
5637     return flags;
5638   }
5639 
5640   // Creates a Flags struct where the gtest_print_time flag has the given
5641   // value.
PrintTimetesting::Flags5642   static Flags PrintTime(bool print_time) {
5643     Flags flags;
5644     flags.print_time = print_time;
5645     return flags;
5646   }
5647 
5648   // Creates a Flags struct where the gtest_random_seed flag has the given
5649   // value.
RandomSeedtesting::Flags5650   static Flags RandomSeed(Int32 random_seed) {
5651     Flags flags;
5652     flags.random_seed = random_seed;
5653     return flags;
5654   }
5655 
5656   // Creates a Flags struct where the gtest_repeat flag has the given
5657   // value.
Repeattesting::Flags5658   static Flags Repeat(Int32 repeat) {
5659     Flags flags;
5660     flags.repeat = repeat;
5661     return flags;
5662   }
5663 
5664   // Creates a Flags struct where the gtest_shuffle flag has the given
5665   // value.
Shuffletesting::Flags5666   static Flags Shuffle(bool shuffle) {
5667     Flags flags;
5668     flags.shuffle = shuffle;
5669     return flags;
5670   }
5671 
5672   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5673   // the given value.
StackTraceDepthtesting::Flags5674   static Flags StackTraceDepth(Int32 stack_trace_depth) {
5675     Flags flags;
5676     flags.stack_trace_depth = stack_trace_depth;
5677     return flags;
5678   }
5679 
5680   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5681   // the given value.
StreamResultTotesting::Flags5682   static Flags StreamResultTo(const char* stream_result_to) {
5683     Flags flags;
5684     flags.stream_result_to = stream_result_to;
5685     return flags;
5686   }
5687 
5688   // Creates a Flags struct where the gtest_throw_on_failure flag has
5689   // the given value.
ThrowOnFailuretesting::Flags5690   static Flags ThrowOnFailure(bool throw_on_failure) {
5691     Flags flags;
5692     flags.throw_on_failure = throw_on_failure;
5693     return flags;
5694   }
5695 
5696   // These fields store the flag values.
5697   bool also_run_disabled_tests;
5698   bool break_on_failure;
5699   bool catch_exceptions;
5700   bool death_test_use_fork;
5701   const char* filter;
5702   bool list_tests;
5703   const char* output;
5704   bool print_time;
5705   Int32 random_seed;
5706   Int32 repeat;
5707   bool shuffle;
5708   Int32 stack_trace_depth;
5709   const char* stream_result_to;
5710   bool throw_on_failure;
5711 };
5712 
5713 // Fixture for testing ParseGoogleTestFlagsOnly().
5714 class ParseFlagsTest : public Test {
5715  protected:
5716   // Clears the flags before each test.
SetUp()5717   void SetUp() override {
5718     GTEST_FLAG(also_run_disabled_tests) = false;
5719     GTEST_FLAG(break_on_failure) = false;
5720     GTEST_FLAG(catch_exceptions) = false;
5721     GTEST_FLAG(death_test_use_fork) = false;
5722     GTEST_FLAG(filter) = "";
5723     GTEST_FLAG(list_tests) = false;
5724     GTEST_FLAG(output) = "";
5725     GTEST_FLAG(print_time) = true;
5726     GTEST_FLAG(random_seed) = 0;
5727     GTEST_FLAG(repeat) = 1;
5728     GTEST_FLAG(shuffle) = false;
5729     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5730     GTEST_FLAG(stream_result_to) = "";
5731     GTEST_FLAG(throw_on_failure) = false;
5732   }
5733 
5734   // Asserts that two narrow or wide string arrays are equal.
5735   template <typename CharType>
AssertStringArrayEq(size_t size1,CharType ** array1,size_t size2,CharType ** array2)5736   static void AssertStringArrayEq(size_t size1, CharType** array1,
5737                                   size_t size2, CharType** array2) {
5738     ASSERT_EQ(size1, size2) << " Array sizes different.";
5739 
5740     for (size_t i = 0; i != size1; i++) {
5741       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5742     }
5743   }
5744 
5745   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5746   static void CheckFlags(const Flags& expected) {
5747     EXPECT_EQ(expected.also_run_disabled_tests,
5748               GTEST_FLAG(also_run_disabled_tests));
5749     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5750     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5751     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5752     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5753     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5754     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5755     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5756     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5757     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5758     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5759     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5760     EXPECT_STREQ(expected.stream_result_to,
5761                  GTEST_FLAG(stream_result_to).c_str());
5762     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5763   }
5764 
5765   // Parses a command line (specified by argc1 and argv1), then
5766   // verifies that the flag values are expected and that the
5767   // recognized flags are removed from the command line.
5768   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5769   static void TestParsingFlags(int argc1, const CharType** argv1,
5770                                int argc2, const CharType** argv2,
5771                                const Flags& expected, bool should_print_help) {
5772     const bool saved_help_flag = ::testing::internal::g_help_flag;
5773     ::testing::internal::g_help_flag = false;
5774 
5775 # if GTEST_HAS_STREAM_REDIRECTION
5776     CaptureStdout();
5777 # endif
5778 
5779     // Parses the command line.
5780     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5781 
5782 # if GTEST_HAS_STREAM_REDIRECTION
5783     const std::string captured_stdout = GetCapturedStdout();
5784 # endif
5785 
5786     // Verifies the flag values.
5787     CheckFlags(expected);
5788 
5789     // Verifies that the recognized flags are removed from the command
5790     // line.
5791     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5792 
5793     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5794     // help message for the flags it recognizes.
5795     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5796 
5797 # if GTEST_HAS_STREAM_REDIRECTION
5798     const char* const expected_help_fragment =
5799         "This program contains tests written using";
5800     if (should_print_help) {
5801       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5802     } else {
5803       EXPECT_PRED_FORMAT2(IsNotSubstring,
5804                           expected_help_fragment, captured_stdout);
5805     }
5806 # endif  // GTEST_HAS_STREAM_REDIRECTION
5807 
5808     ::testing::internal::g_help_flag = saved_help_flag;
5809   }
5810 
5811   // This macro wraps TestParsingFlags s.t. the user doesn't need
5812   // to specify the array sizes.
5813 
5814 # define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5815   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5816                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5817                    expected, should_print_help)
5818 };
5819 
5820 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5821 TEST_F(ParseFlagsTest, Empty) {
5822   const char* argv[] = {nullptr};
5823 
5824   const char* argv2[] = {nullptr};
5825 
5826   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5827 }
5828 
5829 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5830 TEST_F(ParseFlagsTest, NoFlag) {
5831   const char* argv[] = {"foo.exe", nullptr};
5832 
5833   const char* argv2[] = {"foo.exe", nullptr};
5834 
5835   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5836 }
5837 
5838 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)5839 TEST_F(ParseFlagsTest, FilterBad) {
5840   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
5841 
5842   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
5843 
5844   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5845 }
5846 
5847 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5848 TEST_F(ParseFlagsTest, FilterEmpty) {
5849   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5850 
5851   const char* argv2[] = {"foo.exe", nullptr};
5852 
5853   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5854 }
5855 
5856 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5857 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5858   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5859 
5860   const char* argv2[] = {"foo.exe", nullptr};
5861 
5862   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5863 }
5864 
5865 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5866 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5867   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5868 
5869   const char* argv2[] = {"foo.exe", nullptr};
5870 
5871   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5872 }
5873 
5874 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5875 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5876   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5877 
5878   const char* argv2[] = {"foo.exe", nullptr};
5879 
5880   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5881 }
5882 
5883 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5884 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5885   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5886 
5887   const char* argv2[] = {"foo.exe", nullptr};
5888 
5889   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5890 }
5891 
5892 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5893 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5894   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5895 
5896   const char* argv2[] = {"foo.exe", nullptr};
5897 
5898   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5899 }
5900 
5901 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5902 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5903 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5904   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5905 
5906   const char* argv2[] = {"foo.exe", nullptr};
5907 
5908   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5909 }
5910 
5911 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5912 TEST_F(ParseFlagsTest, CatchExceptions) {
5913   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5914 
5915   const char* argv2[] = {"foo.exe", nullptr};
5916 
5917   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5918 }
5919 
5920 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5921 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5922   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5923 
5924   const char* argv2[] = {"foo.exe", nullptr};
5925 
5926   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5927 }
5928 
5929 // Tests having the same flag twice with different values.  The
5930 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5931 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5932   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5933                         nullptr};
5934 
5935   const char* argv2[] = {"foo.exe", nullptr};
5936 
5937   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5938 }
5939 
5940 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5941 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5942   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5943                         "bar",  // Unrecognized by Google Test.
5944                         "--gtest_filter=b", nullptr};
5945 
5946   const char* argv2[] = {"foo.exe", "bar", nullptr};
5947 
5948   Flags flags;
5949   flags.break_on_failure = true;
5950   flags.filter = "b";
5951   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5952 }
5953 
5954 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5955 TEST_F(ParseFlagsTest, ListTestsFlag) {
5956   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5957 
5958   const char* argv2[] = {"foo.exe", nullptr};
5959 
5960   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5961 }
5962 
5963 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)5964 TEST_F(ParseFlagsTest, ListTestsTrue) {
5965   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5966 
5967   const char* argv2[] = {"foo.exe", nullptr};
5968 
5969   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5970 }
5971 
5972 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)5973 TEST_F(ParseFlagsTest, ListTestsFalse) {
5974   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5975 
5976   const char* argv2[] = {"foo.exe", nullptr};
5977 
5978   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5979 }
5980 
5981 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)5982 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5983   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5984 
5985   const char* argv2[] = {"foo.exe", nullptr};
5986 
5987   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5988 }
5989 
5990 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)5991 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5992   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5993 
5994   const char* argv2[] = {"foo.exe", nullptr};
5995 
5996   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5997 }
5998 
5999 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6000 TEST_F(ParseFlagsTest, OutputEmpty) {
6001   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6002 
6003   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6004 
6005   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6006 }
6007 
6008 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)6009 TEST_F(ParseFlagsTest, OutputXml) {
6010   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
6011 
6012   const char* argv2[] = {"foo.exe", nullptr};
6013 
6014   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6015 }
6016 
6017 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)6018 TEST_F(ParseFlagsTest, OutputXmlFile) {
6019   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
6020 
6021   const char* argv2[] = {"foo.exe", nullptr};
6022 
6023   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6024 }
6025 
6026 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)6027 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
6028   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
6029                         nullptr};
6030 
6031   const char* argv2[] = {"foo.exe", nullptr};
6032 
6033   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6034                             Flags::Output("xml:directory/path/"), false);
6035 }
6036 
6037 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6038 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6039   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6040 
6041   const char* argv2[] = {"foo.exe", nullptr};
6042 
6043   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6044 }
6045 
6046 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6047 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6048   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6049 
6050   const char* argv2[] = {"foo.exe", nullptr};
6051 
6052   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6053 }
6054 
6055 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6056 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6057   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6058 
6059   const char* argv2[] = {"foo.exe", nullptr};
6060 
6061   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6062 }
6063 
6064 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6065 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6066   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6067 
6068   const char* argv2[] = {"foo.exe", nullptr};
6069 
6070   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6071 }
6072 
6073 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6074 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6075   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6076 
6077   const char* argv2[] = {"foo.exe", nullptr};
6078 
6079   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6080 }
6081 
6082 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6083 TEST_F(ParseFlagsTest, RandomSeed) {
6084   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6085 
6086   const char* argv2[] = {"foo.exe", nullptr};
6087 
6088   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6089 }
6090 
6091 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6092 TEST_F(ParseFlagsTest, Repeat) {
6093   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6094 
6095   const char* argv2[] = {"foo.exe", nullptr};
6096 
6097   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6098 }
6099 
6100 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6101 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6102   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6103 
6104   const char* argv2[] = {"foo.exe", nullptr};
6105 
6106   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6107                             false);
6108 }
6109 
6110 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6111 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6112   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6113                         nullptr};
6114 
6115   const char* argv2[] = {"foo.exe", nullptr};
6116 
6117   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6118                             false);
6119 }
6120 
6121 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6122 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6123   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6124                         nullptr};
6125 
6126   const char* argv2[] = {"foo.exe", nullptr};
6127 
6128   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6129                             false);
6130 }
6131 
6132 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6133 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6134   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6135 
6136   const char* argv2[] = {"foo.exe", nullptr};
6137 
6138   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6139 }
6140 
6141 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6142 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6143   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6144 
6145   const char* argv2[] = {"foo.exe", nullptr};
6146 
6147   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6148 }
6149 
6150 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6151 TEST_F(ParseFlagsTest, ShuffleTrue) {
6152   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6153 
6154   const char* argv2[] = {"foo.exe", nullptr};
6155 
6156   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6157 }
6158 
6159 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6160 TEST_F(ParseFlagsTest, StackTraceDepth) {
6161   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6162 
6163   const char* argv2[] = {"foo.exe", nullptr};
6164 
6165   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6166 }
6167 
TEST_F(ParseFlagsTest,StreamResultTo)6168 TEST_F(ParseFlagsTest, StreamResultTo) {
6169   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6170                         nullptr};
6171 
6172   const char* argv2[] = {"foo.exe", nullptr};
6173 
6174   GTEST_TEST_PARSING_FLAGS_(
6175       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6176 }
6177 
6178 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6179 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6180   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6181 
6182   const char* argv2[] = {"foo.exe", nullptr};
6183 
6184   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6185 }
6186 
6187 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6188 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6189   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6190 
6191   const char* argv2[] = {"foo.exe", nullptr};
6192 
6193   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6194 }
6195 
6196 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6197 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6198 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6199   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6200 
6201   const char* argv2[] = {"foo.exe", nullptr};
6202 
6203   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6204 }
6205 
6206 # if GTEST_OS_WINDOWS
6207 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6208 TEST_F(ParseFlagsTest, WideStrings) {
6209   const wchar_t* argv[] = {
6210     L"foo.exe",
6211     L"--gtest_filter=Foo*",
6212     L"--gtest_list_tests=1",
6213     L"--gtest_break_on_failure",
6214     L"--non_gtest_flag",
6215     NULL
6216   };
6217 
6218   const wchar_t* argv2[] = {
6219     L"foo.exe",
6220     L"--non_gtest_flag",
6221     NULL
6222   };
6223 
6224   Flags expected_flags;
6225   expected_flags.break_on_failure = true;
6226   expected_flags.filter = "Foo*";
6227   expected_flags.list_tests = true;
6228 
6229   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6230 }
6231 # endif  // GTEST_OS_WINDOWS
6232 
6233 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6234 class FlagfileTest : public ParseFlagsTest {
6235  public:
SetUp()6236   virtual void SetUp() {
6237     ParseFlagsTest::SetUp();
6238 
6239     testdata_path_.Set(internal::FilePath(
6240         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6241         "_flagfile_test"));
6242     testing::internal::posix::RmDir(testdata_path_.c_str());
6243     EXPECT_TRUE(testdata_path_.CreateFolder());
6244   }
6245 
TearDown()6246   virtual void TearDown() {
6247     testing::internal::posix::RmDir(testdata_path_.c_str());
6248     ParseFlagsTest::TearDown();
6249   }
6250 
CreateFlagfile(const char * contents)6251   internal::FilePath CreateFlagfile(const char* contents) {
6252     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6253         testdata_path_, internal::FilePath("unique"), "txt"));
6254     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6255     fprintf(f, "%s", contents);
6256     fclose(f);
6257     return file_path;
6258   }
6259 
6260  private:
6261   internal::FilePath testdata_path_;
6262 };
6263 
6264 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6265 TEST_F(FlagfileTest, Empty) {
6266   internal::FilePath flagfile_path(CreateFlagfile(""));
6267   std::string flagfile_flag =
6268       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6269 
6270   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6271 
6272   const char* argv2[] = {"foo.exe", nullptr};
6273 
6274   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6275 }
6276 
6277 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6278 TEST_F(FlagfileTest, FilterNonEmpty) {
6279   internal::FilePath flagfile_path(CreateFlagfile(
6280       "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
6281   std::string flagfile_flag =
6282       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6283 
6284   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6285 
6286   const char* argv2[] = {"foo.exe", nullptr};
6287 
6288   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6289 }
6290 
6291 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6292 TEST_F(FlagfileTest, SeveralFlags) {
6293   internal::FilePath flagfile_path(CreateFlagfile(
6294       "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
6295       "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
6296       "--"  GTEST_FLAG_PREFIX_  "list_tests"));
6297   std::string flagfile_flag =
6298       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6299 
6300   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6301 
6302   const char* argv2[] = {"foo.exe", nullptr};
6303 
6304   Flags expected_flags;
6305   expected_flags.break_on_failure = true;
6306   expected_flags.filter = "abc";
6307   expected_flags.list_tests = true;
6308 
6309   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6310 }
6311 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6312 
6313 // Tests current_test_info() in UnitTest.
6314 class CurrentTestInfoTest : public Test {
6315  protected:
6316   // Tests that current_test_info() returns NULL before the first test in
6317   // the test case is run.
SetUpTestSuite()6318   static void SetUpTestSuite() {
6319     // There should be no tests running at this point.
6320     const TestInfo* test_info =
6321       UnitTest::GetInstance()->current_test_info();
6322     EXPECT_TRUE(test_info == nullptr)
6323         << "There should be no tests running at this point.";
6324   }
6325 
6326   // Tests that current_test_info() returns NULL after the last test in
6327   // the test case has run.
TearDownTestSuite()6328   static void TearDownTestSuite() {
6329     const TestInfo* test_info =
6330       UnitTest::GetInstance()->current_test_info();
6331     EXPECT_TRUE(test_info == nullptr)
6332         << "There should be no tests running at this point.";
6333   }
6334 };
6335 
6336 // Tests that current_test_info() returns TestInfo for currently running
6337 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6338 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6339   const TestInfo* test_info =
6340     UnitTest::GetInstance()->current_test_info();
6341   ASSERT_TRUE(nullptr != test_info)
6342       << "There is a test running so we should have a valid TestInfo.";
6343   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6344       << "Expected the name of the currently running test case.";
6345   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6346       << "Expected the name of the currently running test.";
6347 }
6348 
6349 // Tests that current_test_info() returns TestInfo for currently running
6350 // test by checking the expected test name against the actual one.  We
6351 // use this test to see that the TestInfo object actually changed from
6352 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6353 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6354   const TestInfo* test_info =
6355     UnitTest::GetInstance()->current_test_info();
6356   ASSERT_TRUE(nullptr != test_info)
6357       << "There is a test running so we should have a valid TestInfo.";
6358   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6359       << "Expected the name of the currently running test case.";
6360   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6361       << "Expected the name of the currently running test.";
6362 }
6363 
6364 }  // namespace testing
6365 
6366 
6367 // These two lines test that we can define tests in a namespace that
6368 // has the name "testing" and is nested in another namespace.
6369 namespace my_namespace {
6370 namespace testing {
6371 
6372 // Makes sure that TEST knows to use ::testing::Test instead of
6373 // ::my_namespace::testing::Test.
6374 class Test {};
6375 
6376 // Makes sure that an assertion knows to use ::testing::Message instead of
6377 // ::my_namespace::testing::Message.
6378 class Message {};
6379 
6380 // Makes sure that an assertion knows to use
6381 // ::testing::AssertionResult instead of
6382 // ::my_namespace::testing::AssertionResult.
6383 class AssertionResult {};
6384 
6385 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6386 TEST(NestedTestingNamespaceTest, Success) {
6387   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6388 }
6389 
6390 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6391 TEST(NestedTestingNamespaceTest, Failure) {
6392   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6393                        "This failure is expected.");
6394 }
6395 
6396 }  // namespace testing
6397 }  // namespace my_namespace
6398 
6399 // Tests that one can call superclass SetUp and TearDown methods--
6400 // that is, that they are not private.
6401 // No tests are based on this fixture; the test "passes" if it compiles
6402 // successfully.
6403 class ProtectedFixtureMethodsTest : public Test {
6404  protected:
SetUp()6405   void SetUp() override { Test::SetUp(); }
TearDown()6406   void TearDown() override { Test::TearDown(); }
6407 };
6408 
6409 // StreamingAssertionsTest tests the streaming versions of a representative
6410 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6411 TEST(StreamingAssertionsTest, Unconditional) {
6412   SUCCEED() << "expected success";
6413   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6414                           "expected failure");
6415   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6416                        "expected failure");
6417 }
6418 
6419 #ifdef __BORLANDC__
6420 // Silences warnings: "Condition is always true", "Unreachable code"
6421 # pragma option push -w-ccc -w-rch
6422 #endif
6423 
TEST(StreamingAssertionsTest,Truth)6424 TEST(StreamingAssertionsTest, Truth) {
6425   EXPECT_TRUE(true) << "unexpected failure";
6426   ASSERT_TRUE(true) << "unexpected failure";
6427   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6428                           "expected failure");
6429   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6430                        "expected failure");
6431 }
6432 
TEST(StreamingAssertionsTest,Truth2)6433 TEST(StreamingAssertionsTest, Truth2) {
6434   EXPECT_FALSE(false) << "unexpected failure";
6435   ASSERT_FALSE(false) << "unexpected failure";
6436   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6437                           "expected failure");
6438   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6439                        "expected failure");
6440 }
6441 
6442 #ifdef __BORLANDC__
6443 // Restores warnings after previous "#pragma option push" suppressed them
6444 # pragma option pop
6445 #endif
6446 
TEST(StreamingAssertionsTest,IntegerEquals)6447 TEST(StreamingAssertionsTest, IntegerEquals) {
6448   EXPECT_EQ(1, 1) << "unexpected failure";
6449   ASSERT_EQ(1, 1) << "unexpected failure";
6450   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6451                           "expected failure");
6452   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6453                        "expected failure");
6454 }
6455 
TEST(StreamingAssertionsTest,IntegerLessThan)6456 TEST(StreamingAssertionsTest, IntegerLessThan) {
6457   EXPECT_LT(1, 2) << "unexpected failure";
6458   ASSERT_LT(1, 2) << "unexpected failure";
6459   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6460                           "expected failure");
6461   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6462                        "expected failure");
6463 }
6464 
TEST(StreamingAssertionsTest,StringsEqual)6465 TEST(StreamingAssertionsTest, StringsEqual) {
6466   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6467   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6468   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6469                           "expected failure");
6470   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6471                        "expected failure");
6472 }
6473 
TEST(StreamingAssertionsTest,StringsNotEqual)6474 TEST(StreamingAssertionsTest, StringsNotEqual) {
6475   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6476   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6477   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6478                           "expected failure");
6479   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6480                        "expected failure");
6481 }
6482 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6483 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6484   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6485   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6486   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6487                           "expected failure");
6488   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6489                        "expected failure");
6490 }
6491 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6492 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6493   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6494   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6495   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6496                           "expected failure");
6497   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6498                        "expected failure");
6499 }
6500 
TEST(StreamingAssertionsTest,FloatingPointEquals)6501 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6502   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6503   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6504   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6505                           "expected failure");
6506   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6507                        "expected failure");
6508 }
6509 
6510 #if GTEST_HAS_EXCEPTIONS
6511 
TEST(StreamingAssertionsTest,Throw)6512 TEST(StreamingAssertionsTest, Throw) {
6513   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6514   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6515   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6516                           "expected failure", "expected failure");
6517   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6518                        "expected failure", "expected failure");
6519 }
6520 
TEST(StreamingAssertionsTest,NoThrow)6521 TEST(StreamingAssertionsTest, NoThrow) {
6522   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6523   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6524   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6525                           "expected failure", "expected failure");
6526   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6527                        "expected failure", "expected failure");
6528 }
6529 
TEST(StreamingAssertionsTest,AnyThrow)6530 TEST(StreamingAssertionsTest, AnyThrow) {
6531   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6532   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6533   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6534                           "expected failure", "expected failure");
6535   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6536                        "expected failure", "expected failure");
6537 }
6538 
6539 #endif  // GTEST_HAS_EXCEPTIONS
6540 
6541 // Tests that Google Test correctly decides whether to use colors in the output.
6542 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6543 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6544   GTEST_FLAG(color) = "yes";
6545 
6546   SetEnv("TERM", "xterm");  // TERM supports colors.
6547   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6548   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6549 
6550   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6551   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6552   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6553 }
6554 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6555 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6556   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6557 
6558   GTEST_FLAG(color) = "True";
6559   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6560 
6561   GTEST_FLAG(color) = "t";
6562   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6563 
6564   GTEST_FLAG(color) = "1";
6565   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6566 }
6567 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6568 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6569   GTEST_FLAG(color) = "no";
6570 
6571   SetEnv("TERM", "xterm");  // TERM supports colors.
6572   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6573   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6574 
6575   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6576   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6577   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6578 }
6579 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6580 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6581   SetEnv("TERM", "xterm");  // TERM supports colors.
6582 
6583   GTEST_FLAG(color) = "F";
6584   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6585 
6586   GTEST_FLAG(color) = "0";
6587   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6588 
6589   GTEST_FLAG(color) = "unknown";
6590   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6591 }
6592 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6593 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6594   GTEST_FLAG(color) = "auto";
6595 
6596   SetEnv("TERM", "xterm");  // TERM supports colors.
6597   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6598   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6599 }
6600 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6601 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6602   GTEST_FLAG(color) = "auto";
6603 
6604 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW
6605   // On Windows, we ignore the TERM variable as it's usually not set.
6606 
6607   SetEnv("TERM", "dumb");
6608   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6609 
6610   SetEnv("TERM", "");
6611   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6612 
6613   SetEnv("TERM", "xterm");
6614   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6615 #else
6616   // On non-Windows platforms, we rely on TERM to determine if the
6617   // terminal supports colors.
6618 
6619   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6620   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6621 
6622   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6623   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6624 
6625   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6626   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6627 
6628   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6629   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6630 
6631   SetEnv("TERM", "xterm");  // TERM supports colors.
6632   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6633 
6634   SetEnv("TERM", "xterm-color");  // TERM supports colors.
6635   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6636 
6637   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6638   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6639 
6640   SetEnv("TERM", "screen");  // TERM supports colors.
6641   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6642 
6643   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6644   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6645 
6646   SetEnv("TERM", "tmux");  // TERM supports colors.
6647   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6648 
6649   SetEnv("TERM", "tmux-256color");  // TERM supports colors.
6650   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6651 
6652   SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
6653   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6654 
6655   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6656   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6657 
6658   SetEnv("TERM", "linux");  // TERM supports colors.
6659   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6660 
6661   SetEnv("TERM", "cygwin");  // TERM supports colors.
6662   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6663 #endif  // GTEST_OS_WINDOWS
6664 }
6665 
6666 // Verifies that StaticAssertTypeEq works in a namespace scope.
6667 
6668 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6669 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6670     StaticAssertTypeEq<const int, const int>();
6671 
6672 // Verifies that StaticAssertTypeEq works in a class.
6673 
6674 template <typename T>
6675 class StaticAssertTypeEqTestHelper {
6676  public:
StaticAssertTypeEqTestHelper()6677   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6678 };
6679 
TEST(StaticAssertTypeEqTest,WorksInClass)6680 TEST(StaticAssertTypeEqTest, WorksInClass) {
6681   StaticAssertTypeEqTestHelper<bool>();
6682 }
6683 
6684 // Verifies that StaticAssertTypeEq works inside a function.
6685 
6686 typedef int IntAlias;
6687 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6688 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6689   StaticAssertTypeEq<int, IntAlias>();
6690   StaticAssertTypeEq<int*, IntAlias*>();
6691 }
6692 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6693 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6694   EXPECT_FALSE(HasNonfatalFailure());
6695 }
6696 
FailFatally()6697 static void FailFatally() { FAIL(); }
6698 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6699 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6700   FailFatally();
6701   const bool has_nonfatal_failure = HasNonfatalFailure();
6702   ClearCurrentTestPartResults();
6703   EXPECT_FALSE(has_nonfatal_failure);
6704 }
6705 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6706 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6707   ADD_FAILURE();
6708   const bool has_nonfatal_failure = HasNonfatalFailure();
6709   ClearCurrentTestPartResults();
6710   EXPECT_TRUE(has_nonfatal_failure);
6711 }
6712 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6713 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6714   FailFatally();
6715   ADD_FAILURE();
6716   const bool has_nonfatal_failure = HasNonfatalFailure();
6717   ClearCurrentTestPartResults();
6718   EXPECT_TRUE(has_nonfatal_failure);
6719 }
6720 
6721 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6722 static bool HasNonfatalFailureHelper() {
6723   return testing::Test::HasNonfatalFailure();
6724 }
6725 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6726 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6727   EXPECT_FALSE(HasNonfatalFailureHelper());
6728 }
6729 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6730 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6731   ADD_FAILURE();
6732   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6733   ClearCurrentTestPartResults();
6734   EXPECT_TRUE(has_nonfatal_failure);
6735 }
6736 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6737 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6738   EXPECT_FALSE(HasFailure());
6739 }
6740 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6741 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6742   FailFatally();
6743   const bool has_failure = HasFailure();
6744   ClearCurrentTestPartResults();
6745   EXPECT_TRUE(has_failure);
6746 }
6747 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6748 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6749   ADD_FAILURE();
6750   const bool has_failure = HasFailure();
6751   ClearCurrentTestPartResults();
6752   EXPECT_TRUE(has_failure);
6753 }
6754 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6755 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6756   FailFatally();
6757   ADD_FAILURE();
6758   const bool has_failure = HasFailure();
6759   ClearCurrentTestPartResults();
6760   EXPECT_TRUE(has_failure);
6761 }
6762 
6763 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6764 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6765 
TEST(HasFailureTest,WorksOutsideOfTestBody)6766 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6767   EXPECT_FALSE(HasFailureHelper());
6768 }
6769 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6770 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6771   ADD_FAILURE();
6772   const bool has_failure = HasFailureHelper();
6773   ClearCurrentTestPartResults();
6774   EXPECT_TRUE(has_failure);
6775 }
6776 
6777 class TestListener : public EmptyTestEventListener {
6778  public:
TestListener()6779   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6780   TestListener(int* on_start_counter, bool* is_destroyed)
6781       : on_start_counter_(on_start_counter),
6782         is_destroyed_(is_destroyed) {}
6783 
~TestListener()6784   ~TestListener() override {
6785     if (is_destroyed_)
6786       *is_destroyed_ = true;
6787   }
6788 
6789  protected:
OnTestProgramStart(const UnitTest &)6790   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6791     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6792   }
6793 
6794  private:
6795   int* on_start_counter_;
6796   bool* is_destroyed_;
6797 };
6798 
6799 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6800 TEST(TestEventListenersTest, ConstructionWorks) {
6801   TestEventListeners listeners;
6802 
6803   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6804   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6805   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6806 }
6807 
6808 // Tests that the TestEventListeners destructor deletes all the listeners it
6809 // owns.
TEST(TestEventListenersTest,DestructionWorks)6810 TEST(TestEventListenersTest, DestructionWorks) {
6811   bool default_result_printer_is_destroyed = false;
6812   bool default_xml_printer_is_destroyed = false;
6813   bool extra_listener_is_destroyed = false;
6814   TestListener* default_result_printer =
6815       new TestListener(nullptr, &default_result_printer_is_destroyed);
6816   TestListener* default_xml_printer =
6817       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6818   TestListener* extra_listener =
6819       new TestListener(nullptr, &extra_listener_is_destroyed);
6820 
6821   {
6822     TestEventListeners listeners;
6823     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6824                                                         default_result_printer);
6825     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6826                                                        default_xml_printer);
6827     listeners.Append(extra_listener);
6828   }
6829   EXPECT_TRUE(default_result_printer_is_destroyed);
6830   EXPECT_TRUE(default_xml_printer_is_destroyed);
6831   EXPECT_TRUE(extra_listener_is_destroyed);
6832 }
6833 
6834 // Tests that a listener Append'ed to a TestEventListeners list starts
6835 // receiving events.
TEST(TestEventListenersTest,Append)6836 TEST(TestEventListenersTest, Append) {
6837   int on_start_counter = 0;
6838   bool is_destroyed = false;
6839   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6840   {
6841     TestEventListeners listeners;
6842     listeners.Append(listener);
6843     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6844         *UnitTest::GetInstance());
6845     EXPECT_EQ(1, on_start_counter);
6846   }
6847   EXPECT_TRUE(is_destroyed);
6848 }
6849 
6850 // Tests that listeners receive events in the order they were appended to
6851 // the list, except for *End requests, which must be received in the reverse
6852 // order.
6853 class SequenceTestingListener : public EmptyTestEventListener {
6854  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6855   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6856       : vector_(vector), id_(id) {}
6857 
6858  protected:
OnTestProgramStart(const UnitTest &)6859   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6860     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6861   }
6862 
OnTestProgramEnd(const UnitTest &)6863   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6864     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6865   }
6866 
OnTestIterationStart(const UnitTest &,int)6867   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6868                             int /*iteration*/) override {
6869     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6870   }
6871 
OnTestIterationEnd(const UnitTest &,int)6872   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6873                           int /*iteration*/) override {
6874     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6875   }
6876 
6877  private:
GetEventDescription(const char * method)6878   std::string GetEventDescription(const char* method) {
6879     Message message;
6880     message << id_ << "." << method;
6881     return message.GetString();
6882   }
6883 
6884   std::vector<std::string>* vector_;
6885   const char* const id_;
6886 
6887   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6888 };
6889 
TEST(EventListenerTest,AppendKeepsOrder)6890 TEST(EventListenerTest, AppendKeepsOrder) {
6891   std::vector<std::string> vec;
6892   TestEventListeners listeners;
6893   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6894   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6895   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6896 
6897   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6898       *UnitTest::GetInstance());
6899   ASSERT_EQ(3U, vec.size());
6900   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6901   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6902   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6903 
6904   vec.clear();
6905   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6906       *UnitTest::GetInstance());
6907   ASSERT_EQ(3U, vec.size());
6908   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6909   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6910   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6911 
6912   vec.clear();
6913   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6914       *UnitTest::GetInstance(), 0);
6915   ASSERT_EQ(3U, vec.size());
6916   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6917   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6918   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6919 
6920   vec.clear();
6921   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6922       *UnitTest::GetInstance(), 0);
6923   ASSERT_EQ(3U, vec.size());
6924   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6925   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6926   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6927 }
6928 
6929 // Tests that a listener removed from a TestEventListeners list stops receiving
6930 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6931 TEST(TestEventListenersTest, Release) {
6932   int on_start_counter = 0;
6933   bool is_destroyed = false;
6934   // Although Append passes the ownership of this object to the list,
6935   // the following calls release it, and we need to delete it before the
6936   // test ends.
6937   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6938   {
6939     TestEventListeners listeners;
6940     listeners.Append(listener);
6941     EXPECT_EQ(listener, listeners.Release(listener));
6942     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6943         *UnitTest::GetInstance());
6944     EXPECT_TRUE(listeners.Release(listener) == nullptr);
6945   }
6946   EXPECT_EQ(0, on_start_counter);
6947   EXPECT_FALSE(is_destroyed);
6948   delete listener;
6949 }
6950 
6951 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6952 TEST(EventListenerTest, SuppressEventForwarding) {
6953   int on_start_counter = 0;
6954   TestListener* listener = new TestListener(&on_start_counter, nullptr);
6955 
6956   TestEventListeners listeners;
6957   listeners.Append(listener);
6958   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6959   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6960   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6961   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6962       *UnitTest::GetInstance());
6963   EXPECT_EQ(0, on_start_counter);
6964 }
6965 
6966 // Tests that events generated by Google Test are not forwarded in
6967 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)6968 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6969   EXPECT_DEATH_IF_SUPPORTED({
6970       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6971           *GetUnitTestImpl()->listeners())) << "expected failure";},
6972       "expected failure");
6973 }
6974 
6975 // Tests that a listener installed via SetDefaultResultPrinter() starts
6976 // receiving events and is returned via default_result_printer() and that
6977 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)6978 TEST(EventListenerTest, default_result_printer) {
6979   int on_start_counter = 0;
6980   bool is_destroyed = false;
6981   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6982 
6983   TestEventListeners listeners;
6984   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6985 
6986   EXPECT_EQ(listener, listeners.default_result_printer());
6987 
6988   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6989       *UnitTest::GetInstance());
6990 
6991   EXPECT_EQ(1, on_start_counter);
6992 
6993   // Replacing default_result_printer with something else should remove it
6994   // from the list and destroy it.
6995   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
6996 
6997   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6998   EXPECT_TRUE(is_destroyed);
6999 
7000   // After broadcasting an event the counter is still the same, indicating
7001   // the listener is not in the list anymore.
7002   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7003       *UnitTest::GetInstance());
7004   EXPECT_EQ(1, on_start_counter);
7005 }
7006 
7007 // Tests that the default_result_printer listener stops receiving events
7008 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7009 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7010   int on_start_counter = 0;
7011   bool is_destroyed = false;
7012   // Although Append passes the ownership of this object to the list,
7013   // the following calls release it, and we need to delete it before the
7014   // test ends.
7015   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7016   {
7017     TestEventListeners listeners;
7018     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7019 
7020     EXPECT_EQ(listener, listeners.Release(listener));
7021     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7022     EXPECT_FALSE(is_destroyed);
7023 
7024     // Broadcasting events now should not affect default_result_printer.
7025     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7026         *UnitTest::GetInstance());
7027     EXPECT_EQ(0, on_start_counter);
7028   }
7029   // Destroying the list should not affect the listener now, too.
7030   EXPECT_FALSE(is_destroyed);
7031   delete listener;
7032 }
7033 
7034 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7035 // receiving events and is returned via default_xml_generator() and that
7036 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7037 TEST(EventListenerTest, default_xml_generator) {
7038   int on_start_counter = 0;
7039   bool is_destroyed = false;
7040   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7041 
7042   TestEventListeners listeners;
7043   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7044 
7045   EXPECT_EQ(listener, listeners.default_xml_generator());
7046 
7047   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7048       *UnitTest::GetInstance());
7049 
7050   EXPECT_EQ(1, on_start_counter);
7051 
7052   // Replacing default_xml_generator with something else should remove it
7053   // from the list and destroy it.
7054   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7055 
7056   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7057   EXPECT_TRUE(is_destroyed);
7058 
7059   // After broadcasting an event the counter is still the same, indicating
7060   // the listener is not in the list anymore.
7061   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7062       *UnitTest::GetInstance());
7063   EXPECT_EQ(1, on_start_counter);
7064 }
7065 
7066 // Tests that the default_xml_generator listener stops receiving events
7067 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7068 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7069   int on_start_counter = 0;
7070   bool is_destroyed = false;
7071   // Although Append passes the ownership of this object to the list,
7072   // the following calls release it, and we need to delete it before the
7073   // test ends.
7074   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7075   {
7076     TestEventListeners listeners;
7077     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7078 
7079     EXPECT_EQ(listener, listeners.Release(listener));
7080     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7081     EXPECT_FALSE(is_destroyed);
7082 
7083     // Broadcasting events now should not affect default_xml_generator.
7084     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7085         *UnitTest::GetInstance());
7086     EXPECT_EQ(0, on_start_counter);
7087   }
7088   // Destroying the list should not affect the listener now, too.
7089   EXPECT_FALSE(is_destroyed);
7090   delete listener;
7091 }
7092 
7093 // Sanity tests to ensure that the alternative, verbose spellings of
7094 // some of the macros work.  We don't test them thoroughly as that
7095 // would be quite involved.  Since their implementations are
7096 // straightforward, and they are rarely used, we'll just rely on the
7097 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7098 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7099   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7100 
7101   // GTEST_FAIL is the same as FAIL.
7102   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7103                        "An expected failure");
7104 
7105   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7106 
7107   GTEST_ASSERT_EQ(0, 0);
7108   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7109                        "An expected failure");
7110   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7111                        "An expected failure");
7112 
7113   GTEST_ASSERT_NE(0, 1);
7114   GTEST_ASSERT_NE(1, 0);
7115   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7116                        "An expected failure");
7117 
7118   GTEST_ASSERT_LE(0, 0);
7119   GTEST_ASSERT_LE(0, 1);
7120   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7121                        "An expected failure");
7122 
7123   GTEST_ASSERT_LT(0, 1);
7124   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7125                        "An expected failure");
7126   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7127                        "An expected failure");
7128 
7129   GTEST_ASSERT_GE(0, 0);
7130   GTEST_ASSERT_GE(1, 0);
7131   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7132                        "An expected failure");
7133 
7134   GTEST_ASSERT_GT(1, 0);
7135   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7136                        "An expected failure");
7137   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7138                        "An expected failure");
7139 }
7140 
7141 // Tests for internal utilities necessary for implementation of the universal
7142 // printing.
7143 
7144 class ConversionHelperBase {};
7145 class ConversionHelperDerived : public ConversionHelperBase {};
7146 
7147 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest,ValueIsCompileTimeConstant)7148 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7149   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7150                         const_true);
7151   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7152 }
7153 
7154 // Tests that IsAProtocolMessage<T>::value is true when T is
7155 // proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsTrueWhenTypeIsAProtocolMessage)7156 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7157   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7158   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7159 }
7160 
7161 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7162 // ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7163 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7164   EXPECT_FALSE(IsAProtocolMessage<int>::value);
7165   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7166 }
7167 
7168 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7169 // equal.
TEST(CompileAssertTypesEqual,CompilesWhenTypesAreEqual)7170 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7171   CompileAssertTypesEqual<void, void>();
7172   CompileAssertTypesEqual<int*, int*>();
7173 }
7174 
7175 // Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest,DoesNotAffectNonReferenceType)7176 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7177   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7178   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7179 }
7180 
7181 // Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest,RemovesReference)7182 TEST(RemoveReferenceTest, RemovesReference) {
7183   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7184   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7185 }
7186 
7187 // Tests GTEST_REMOVE_REFERENCE_.
7188 
7189 template <typename T1, typename T2>
TestGTestRemoveReference()7190 void TestGTestRemoveReference() {
7191   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7192 }
7193 
TEST(RemoveReferenceTest,MacroVersion)7194 TEST(RemoveReferenceTest, MacroVersion) {
7195   TestGTestRemoveReference<int, int>();
7196   TestGTestRemoveReference<const char, const char&>();
7197 }
7198 
7199 
7200 // Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest,DoesNotAffectNonConstType)7201 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7202   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7203   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7204 }
7205 
7206 // Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest,RemovesConst)7207 TEST(RemoveConstTest, RemovesConst) {
7208   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7209   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7210   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7211 }
7212 
7213 // Tests GTEST_REMOVE_CONST_.
7214 
7215 template <typename T1, typename T2>
TestGTestRemoveConst()7216 void TestGTestRemoveConst() {
7217   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7218 }
7219 
TEST(RemoveConstTest,MacroVersion)7220 TEST(RemoveConstTest, MacroVersion) {
7221   TestGTestRemoveConst<int, int>();
7222   TestGTestRemoveConst<double&, double&>();
7223   TestGTestRemoveConst<char, const char>();
7224 }
7225 
7226 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7227 
7228 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7229 void TestGTestRemoveReferenceAndConst() {
7230   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7231 }
7232 
TEST(RemoveReferenceToConstTest,Works)7233 TEST(RemoveReferenceToConstTest, Works) {
7234   TestGTestRemoveReferenceAndConst<int, int>();
7235   TestGTestRemoveReferenceAndConst<double, double&>();
7236   TestGTestRemoveReferenceAndConst<char, const char>();
7237   TestGTestRemoveReferenceAndConst<char, const char&>();
7238   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7239 }
7240 
7241 // Tests that AddReference does not affect reference types.
TEST(AddReferenceTest,DoesNotAffectReferenceType)7242 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7243   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7244   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7245 }
7246 
7247 // Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest,AddsReference)7248 TEST(AddReferenceTest, AddsReference) {
7249   CompileAssertTypesEqual<int&, AddReference<int>::type>();
7250   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7251 }
7252 
7253 // Tests GTEST_ADD_REFERENCE_.
7254 
7255 template <typename T1, typename T2>
TestGTestAddReference()7256 void TestGTestAddReference() {
7257   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7258 }
7259 
TEST(AddReferenceTest,MacroVersion)7260 TEST(AddReferenceTest, MacroVersion) {
7261   TestGTestAddReference<int&, int>();
7262   TestGTestAddReference<const char&, const char&>();
7263 }
7264 
7265 // Tests GTEST_REFERENCE_TO_CONST_.
7266 
7267 template <typename T1, typename T2>
TestGTestReferenceToConst()7268 void TestGTestReferenceToConst() {
7269   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7270 }
7271 
TEST(GTestReferenceToConstTest,Works)7272 TEST(GTestReferenceToConstTest, Works) {
7273   TestGTestReferenceToConst<const char&, char>();
7274   TestGTestReferenceToConst<const int&, const int>();
7275   TestGTestReferenceToConst<const double&, double>();
7276   TestGTestReferenceToConst<const std::string&, const std::string&>();
7277 }
7278 
7279 
7280 // Tests IsContainerTest.
7281 
7282 class NonContainer {};
7283 
TEST(IsContainerTestTest,WorksForNonContainer)7284 TEST(IsContainerTestTest, WorksForNonContainer) {
7285   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7286   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7287   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7288 }
7289 
TEST(IsContainerTestTest,WorksForContainer)7290 TEST(IsContainerTestTest, WorksForContainer) {
7291   EXPECT_EQ(sizeof(IsContainer),
7292             sizeof(IsContainerTest<std::vector<bool> >(0)));
7293   EXPECT_EQ(sizeof(IsContainer),
7294             sizeof(IsContainerTest<std::map<int, double> >(0)));
7295 }
7296 
7297 struct ConstOnlyContainerWithPointerIterator {
7298   using const_iterator = int*;
7299   const_iterator begin() const;
7300   const_iterator end() const;
7301 };
7302 
7303 struct ConstOnlyContainerWithClassIterator {
7304   struct const_iterator {
7305     const int& operator*() const;
7306     const_iterator& operator++(/* pre-increment */);
7307   };
7308   const_iterator begin() const;
7309   const_iterator end() const;
7310 };
7311 
TEST(IsContainerTestTest,ConstOnlyContainer)7312 TEST(IsContainerTestTest, ConstOnlyContainer) {
7313   EXPECT_EQ(sizeof(IsContainer),
7314             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7315   EXPECT_EQ(sizeof(IsContainer),
7316             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7317 }
7318 
7319 // Tests IsHashTable.
7320 struct AHashTable {
7321   typedef void hasher;
7322 };
7323 struct NotReallyAHashTable {
7324   typedef void hasher;
7325   typedef void reverse_iterator;
7326 };
TEST(IsHashTable,Basic)7327 TEST(IsHashTable, Basic) {
7328   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7329   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7330   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7331   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7332 }
7333 
7334 // Tests ArrayEq().
7335 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7336 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7337   EXPECT_TRUE(ArrayEq(5, 5L));
7338   EXPECT_FALSE(ArrayEq('a', 0));
7339 }
7340 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7341 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7342   // Note that a and b are distinct but compatible types.
7343   const int a[] = { 0, 1 };
7344   long b[] = { 0, 1 };
7345   EXPECT_TRUE(ArrayEq(a, b));
7346   EXPECT_TRUE(ArrayEq(a, 2, b));
7347 
7348   b[0] = 2;
7349   EXPECT_FALSE(ArrayEq(a, b));
7350   EXPECT_FALSE(ArrayEq(a, 1, b));
7351 }
7352 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7353 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7354   const char a[][3] = { "hi", "lo" };
7355   const char b[][3] = { "hi", "lo" };
7356   const char c[][3] = { "hi", "li" };
7357 
7358   EXPECT_TRUE(ArrayEq(a, b));
7359   EXPECT_TRUE(ArrayEq(a, 2, b));
7360 
7361   EXPECT_FALSE(ArrayEq(a, c));
7362   EXPECT_FALSE(ArrayEq(a, 2, c));
7363 }
7364 
7365 // Tests ArrayAwareFind().
7366 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7367 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7368   const char a[] = "hello";
7369   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7370   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7371 }
7372 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7373 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7374   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7375   const int b[2] = { 2, 3 };
7376   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7377 
7378   const int c[2] = { 6, 7 };
7379   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7380 }
7381 
7382 // Tests CopyArray().
7383 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7384 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7385   int n = 0;
7386   CopyArray('a', &n);
7387   EXPECT_EQ('a', n);
7388 }
7389 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7390 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7391   const char a[3] = "hi";
7392   int b[3];
7393 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7394   CopyArray(a, &b);
7395   EXPECT_TRUE(ArrayEq(a, b));
7396 #endif
7397 
7398   int c[3];
7399   CopyArray(a, 3, c);
7400   EXPECT_TRUE(ArrayEq(a, c));
7401 }
7402 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7403 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7404   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7405   int b[2][3];
7406 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7407   CopyArray(a, &b);
7408   EXPECT_TRUE(ArrayEq(a, b));
7409 #endif
7410 
7411   int c[2][3];
7412   CopyArray(a, 2, c);
7413   EXPECT_TRUE(ArrayEq(a, c));
7414 }
7415 
7416 // Tests NativeArray.
7417 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7418 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7419   const int a[3] = { 0, 1, 2 };
7420   NativeArray<int> na(a, 3, RelationToSourceReference());
7421   EXPECT_EQ(3U, na.size());
7422   EXPECT_EQ(a, na.begin());
7423 }
7424 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7425 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7426   typedef int Array[2];
7427   Array* a = new Array[1];
7428   (*a)[0] = 0;
7429   (*a)[1] = 1;
7430   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7431   EXPECT_NE(*a, na.begin());
7432   delete[] a;
7433   EXPECT_EQ(0, na.begin()[0]);
7434   EXPECT_EQ(1, na.begin()[1]);
7435 
7436   // We rely on the heap checker to verify that na deletes the copy of
7437   // array.
7438 }
7439 
TEST(NativeArrayTest,TypeMembersAreCorrect)7440 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7441   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7442   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7443 
7444   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7445   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7446 }
7447 
TEST(NativeArrayTest,MethodsWork)7448 TEST(NativeArrayTest, MethodsWork) {
7449   const int a[3] = { 0, 1, 2 };
7450   NativeArray<int> na(a, 3, RelationToSourceCopy());
7451   ASSERT_EQ(3U, na.size());
7452   EXPECT_EQ(3, na.end() - na.begin());
7453 
7454   NativeArray<int>::const_iterator it = na.begin();
7455   EXPECT_EQ(0, *it);
7456   ++it;
7457   EXPECT_EQ(1, *it);
7458   it++;
7459   EXPECT_EQ(2, *it);
7460   ++it;
7461   EXPECT_EQ(na.end(), it);
7462 
7463   EXPECT_TRUE(na == na);
7464 
7465   NativeArray<int> na2(a, 3, RelationToSourceReference());
7466   EXPECT_TRUE(na == na2);
7467 
7468   const int b1[3] = { 0, 1, 1 };
7469   const int b2[4] = { 0, 1, 2, 3 };
7470   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7471   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7472 }
7473 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7474 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7475   const char a[2][3] = { "hi", "lo" };
7476   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7477   ASSERT_EQ(2U, na.size());
7478   EXPECT_EQ(a, na.begin());
7479 }
7480 
7481 // IndexSequence
TEST(IndexSequence,MakeIndexSequence)7482 TEST(IndexSequence, MakeIndexSequence) {
7483   using testing::internal::IndexSequence;
7484   using testing::internal::MakeIndexSequence;
7485   EXPECT_TRUE(
7486       (std::is_same<IndexSequence<>, MakeIndexSequence<0>::type>::value));
7487   EXPECT_TRUE(
7488       (std::is_same<IndexSequence<0>, MakeIndexSequence<1>::type>::value));
7489   EXPECT_TRUE(
7490       (std::is_same<IndexSequence<0, 1>, MakeIndexSequence<2>::type>::value));
7491   EXPECT_TRUE((
7492       std::is_same<IndexSequence<0, 1, 2>, MakeIndexSequence<3>::type>::value));
7493   EXPECT_TRUE(
7494       (std::is_base_of<IndexSequence<0, 1, 2>, MakeIndexSequence<3>>::value));
7495 }
7496 
7497 // ElemFromList
TEST(ElemFromList,Basic)7498 TEST(ElemFromList, Basic) {
7499   using testing::internal::ElemFromList;
7500   using Idx = testing::internal::MakeIndexSequence<3>::type;
7501   EXPECT_TRUE((
7502       std::is_same<int, ElemFromList<0, Idx, int, double, char>::type>::value));
7503   EXPECT_TRUE(
7504       (std::is_same<double,
7505                     ElemFromList<1, Idx, int, double, char>::type>::value));
7506   EXPECT_TRUE(
7507       (std::is_same<char,
7508                     ElemFromList<2, Idx, int, double, char>::type>::value));
7509   EXPECT_TRUE(
7510       (std::is_same<
7511           char, ElemFromList<7, testing::internal::MakeIndexSequence<12>::type,
7512                              int, int, int, int, int, int, int, char, int, int,
7513                              int, int>::type>::value));
7514 }
7515 
7516 // FlatTuple
TEST(FlatTuple,Basic)7517 TEST(FlatTuple, Basic) {
7518   using testing::internal::FlatTuple;
7519 
7520   FlatTuple<int, double, const char*> tuple = {};
7521   EXPECT_EQ(0, tuple.Get<0>());
7522   EXPECT_EQ(0.0, tuple.Get<1>());
7523   EXPECT_EQ(nullptr, tuple.Get<2>());
7524 
7525   tuple = FlatTuple<int, double, const char*>(7, 3.2, "Foo");
7526   EXPECT_EQ(7, tuple.Get<0>());
7527   EXPECT_EQ(3.2, tuple.Get<1>());
7528   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7529 
7530   tuple.Get<1>() = 5.1;
7531   EXPECT_EQ(5.1, tuple.Get<1>());
7532 }
7533 
TEST(FlatTuple,ManyTypes)7534 TEST(FlatTuple, ManyTypes) {
7535   using testing::internal::FlatTuple;
7536 
7537   // Instantiate FlatTuple with 257 ints.
7538   // Tests show that we can do it with thousands of elements, but very long
7539   // compile times makes it unusuitable for this test.
7540 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7541 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7542 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7543 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7544 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7545 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7546 
7547   // Let's make sure that we can have a very long list of types without blowing
7548   // up the template instantiation depth.
7549   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7550 
7551   tuple.Get<0>() = 7;
7552   tuple.Get<99>() = 17;
7553   tuple.Get<256>() = 1000;
7554   EXPECT_EQ(7, tuple.Get<0>());
7555   EXPECT_EQ(17, tuple.Get<99>());
7556   EXPECT_EQ(1000, tuple.Get<256>());
7557 }
7558 
7559 // Tests SkipPrefix().
7560 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7561 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7562   const char* const str = "hello";
7563 
7564   const char* p = str;
7565   EXPECT_TRUE(SkipPrefix("", &p));
7566   EXPECT_EQ(str, p);
7567 
7568   p = str;
7569   EXPECT_TRUE(SkipPrefix("hell", &p));
7570   EXPECT_EQ(str + 4, p);
7571 }
7572 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7573 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7574   const char* const str = "world";
7575 
7576   const char* p = str;
7577   EXPECT_FALSE(SkipPrefix("W", &p));
7578   EXPECT_EQ(str, p);
7579 
7580   p = str;
7581   EXPECT_FALSE(SkipPrefix("world!", &p));
7582   EXPECT_EQ(str, p);
7583 }
7584 
7585 // Tests ad_hoc_test_result().
7586 
7587 class AdHocTestResultTest : public testing::Test {
7588  protected:
SetUpTestSuite()7589   static void SetUpTestSuite() {
7590     FAIL() << "A failure happened inside SetUpTestSuite().";
7591   }
7592 };
7593 
TEST_F(AdHocTestResultTest,AdHocTestResultForTestSuiteShowsFailure)7594 TEST_F(AdHocTestResultTest, AdHocTestResultForTestSuiteShowsFailure) {
7595   const testing::TestResult& test_result = testing::UnitTest::GetInstance()
7596                                                ->current_test_suite()
7597                                                ->ad_hoc_test_result();
7598   EXPECT_TRUE(test_result.Failed());
7599 }
7600 
TEST_F(AdHocTestResultTest,AdHocTestResultTestForUnitTestDoesNotShowFailure)7601 TEST_F(AdHocTestResultTest, AdHocTestResultTestForUnitTestDoesNotShowFailure) {
7602   const testing::TestResult& test_result =
7603       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7604   EXPECT_FALSE(test_result.Failed());
7605 }
7606 
7607 class DynamicUnitTestFixture : public testing::Test {};
7608 
7609 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7610   void TestBody() override { EXPECT_TRUE(true); }
7611 };
7612 
7613 auto* dynamic_test = testing::RegisterTest(
7614     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anon963337bb0602() 7615     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7616 
TEST(RegisterTest,WasRegistered)7617 TEST(RegisterTest, WasRegistered) {
7618   auto* unittest = testing::UnitTest::GetInstance();
7619   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7620     auto* tests = unittest->GetTestSuite(i);
7621     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7622     for (int j = 0; j < tests->total_test_count(); ++j) {
7623       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7624       // Found it.
7625       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7626       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7627       return;
7628     }
7629   }
7630 
7631   FAIL() << "Didn't find the test!";
7632 }
7633