• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <common.h>
4 #include <malloc.h>
5 #include <net.h>
6 #include <netdev.h>
7 #include <pci.h>
8 
9 #undef DEBUG_SROM
10 #undef DEBUG_SROM2
11 
12 #undef UPDATE_SROM
13 
14 /* PCI Registers.
15  */
16 #define PCI_CFDA_PSM		0x43
17 
18 #define CFRV_RN		0x000000f0	/* Revision Number */
19 
20 #define WAKEUP		0x00		/* Power Saving Wakeup */
21 #define SLEEP		0x80		/* Power Saving Sleep Mode */
22 
23 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
24 
25 /* Ethernet chip registers.
26  */
27 #define DE4X5_BMR	0x000		/* Bus Mode Register */
28 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
29 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
30 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
31 #define DE4X5_STS	0x028		/* Status Register */
32 #define DE4X5_OMR	0x030		/* Operation Mode Register */
33 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
34 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
35 
36 /* Register bits.
37  */
38 #define BMR_SWR		0x00000001	/* Software Reset */
39 #define STS_TS		0x00700000	/* Transmit Process State */
40 #define STS_RS		0x000e0000	/* Receive Process State */
41 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
42 #define OMR_SR		0x00000002	/* Start/Stop Receive */
43 #define OMR_PS		0x00040000	/* Port Select */
44 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
45 #define OMR_PM		0x00000080	/* Pass All Multicast */
46 
47 /* Descriptor bits.
48  */
49 #define R_OWN		0x80000000	/* Own Bit */
50 #define RD_RER		0x02000000	/* Receive End Of Ring */
51 #define RD_LS		0x00000100	/* Last Descriptor */
52 #define RD_ES		0x00008000	/* Error Summary */
53 #define TD_TER		0x02000000	/* Transmit End Of Ring */
54 #define T_OWN		0x80000000	/* Own Bit */
55 #define TD_LS		0x40000000	/* Last Segment */
56 #define TD_FS		0x20000000	/* First Segment */
57 #define TD_ES		0x00008000	/* Error Summary */
58 #define TD_SET		0x08000000	/* Setup Packet */
59 
60 /* The EEPROM commands include the alway-set leading bit. */
61 #define SROM_WRITE_CMD	5
62 #define SROM_READ_CMD	6
63 #define SROM_ERASE_CMD	7
64 
65 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
66 #define SROM_RD		0x00004000	/* Read from Boot ROM */
67 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
68 #define EE_WRITE_0	    0x4801
69 #define EE_WRITE_1	    0x4805
70 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
71 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
72 
73 #define DT_IN		0x00000004	/* Serial Data In */
74 #define DT_CLK		0x00000002	/* Serial ROM Clock */
75 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
76 
77 #define POLL_DEMAND	1
78 
79 #ifdef CONFIG_TULIP_FIX_DAVICOM
80 #define RESET_DM9102(dev) {\
81     unsigned long i;\
82     i=INL(dev, 0x0);\
83     udelay(1000);\
84     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
85     udelay(1000);\
86 }
87 #else
88 #define RESET_DE4X5(dev) {\
89     int i;\
90     i=INL(dev, DE4X5_BMR);\
91     udelay(1000);\
92     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
93     udelay(1000);\
94     OUTL(dev, i, DE4X5_BMR);\
95     udelay(1000);\
96     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
97     udelay(1000);\
98 }
99 #endif
100 
101 #define START_DE4X5(dev) {\
102     s32 omr; \
103     omr = INL(dev, DE4X5_OMR);\
104     omr |= OMR_ST | OMR_SR;\
105     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
106 }
107 
108 #define STOP_DE4X5(dev) {\
109     s32 omr; \
110     omr = INL(dev, DE4X5_OMR);\
111     omr &= ~(OMR_ST|OMR_SR);\
112     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
113 }
114 
115 #define NUM_RX_DESC PKTBUFSRX
116 #ifndef CONFIG_TULIP_FIX_DAVICOM
117 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
118 #else
119 	#define NUM_TX_DESC 4
120 #endif
121 #define RX_BUFF_SZ  PKTSIZE_ALIGN
122 
123 #define TOUT_LOOP   1000000
124 
125 #define SETUP_FRAME_LEN 192
126 #define ETH_ALEN	6
127 
128 struct de4x5_desc {
129 	volatile s32 status;
130 	u32 des1;
131 	u32 buf;
132 	u32 next;
133 };
134 
135 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
136 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
137 static int rx_new;                             /* RX descriptor ring pointer */
138 static int tx_new;                             /* TX descriptor ring pointer */
139 
140 static char rxRingSize;
141 static char txRingSize;
142 
143 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
144 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
145 static int   getfrom_srom(struct eth_device* dev, u_long addr);
146 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
147 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
148 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
149 #ifdef UPDATE_SROM
150 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
151 static void  update_srom(struct eth_device *dev, bd_t *bis);
152 #endif
153 #ifndef CONFIG_TULIP_FIX_DAVICOM
154 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
155 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
156 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
157 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
158 
159 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
160 static int   dc21x4x_send(struct eth_device *dev, void *packet, int length);
161 static int   dc21x4x_recv(struct eth_device* dev);
162 static void  dc21x4x_halt(struct eth_device* dev);
163 #ifdef CONFIG_TULIP_SELECT_MEDIA
164 extern void  dc21x4x_select_media(struct eth_device* dev);
165 #endif
166 
167 #if defined(CONFIG_E500)
168 #define phys_to_bus(a) (a)
169 #else
170 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
171 #endif
172 
INL(struct eth_device * dev,u_long addr)173 static int INL(struct eth_device* dev, u_long addr)
174 {
175 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
176 }
177 
OUTL(struct eth_device * dev,int command,u_long addr)178 static void OUTL(struct eth_device* dev, int command, u_long addr)
179 {
180 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
181 }
182 
183 static struct pci_device_id supported[] = {
184 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
185 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
186 #ifdef CONFIG_TULIP_FIX_DAVICOM
187 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
188 #endif
189 	{ }
190 };
191 
dc21x4x_initialize(bd_t * bis)192 int dc21x4x_initialize(bd_t *bis)
193 {
194 	int			idx=0;
195 	int			card_number = 0;
196 	unsigned int		cfrv;
197 	unsigned char		timer;
198 	pci_dev_t		devbusfn;
199 	unsigned int		iobase;
200 	unsigned short		status;
201 	struct eth_device*	dev;
202 
203 	while(1) {
204 		devbusfn =  pci_find_devices(supported, idx++);
205 		if (devbusfn == -1) {
206 			break;
207 		}
208 
209 		/* Get the chip configuration revision register. */
210 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
211 
212 #ifndef CONFIG_TULIP_FIX_DAVICOM
213 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
214 			printf("Error: The chip is not DC21143.\n");
215 			continue;
216 		}
217 #endif
218 
219 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
220 		status |=
221 #ifdef CONFIG_TULIP_USE_IO
222 		  PCI_COMMAND_IO |
223 #else
224 		  PCI_COMMAND_MEMORY |
225 #endif
226 		  PCI_COMMAND_MASTER;
227 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
228 
229 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
230 #ifdef CONFIG_TULIP_USE_IO
231 		if (!(status & PCI_COMMAND_IO)) {
232 			printf("Error: Can not enable I/O access.\n");
233 			continue;
234 		}
235 #else
236 		if (!(status & PCI_COMMAND_MEMORY)) {
237 			printf("Error: Can not enable MEMORY access.\n");
238 			continue;
239 		}
240 #endif
241 
242 		if (!(status & PCI_COMMAND_MASTER)) {
243 			printf("Error: Can not enable Bus Mastering.\n");
244 			continue;
245 		}
246 
247 		/* Check the latency timer for values >= 0x60. */
248 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
249 
250 		if (timer < 0x60) {
251 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
252 		}
253 
254 #ifdef CONFIG_TULIP_USE_IO
255 		/* read BAR for memory space access */
256 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
257 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
258 #else
259 		/* read BAR for memory space access */
260 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
261 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
262 #endif
263 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
264 
265 		dev = (struct eth_device*) malloc(sizeof *dev);
266 
267 		if (!dev) {
268 			printf("Can not allocalte memory of dc21x4x\n");
269 			break;
270 		}
271 		memset(dev, 0, sizeof(*dev));
272 
273 #ifdef CONFIG_TULIP_FIX_DAVICOM
274 		sprintf(dev->name, "Davicom#%d", card_number);
275 #else
276 		sprintf(dev->name, "dc21x4x#%d", card_number);
277 #endif
278 
279 #ifdef CONFIG_TULIP_USE_IO
280 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
281 #else
282 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
283 #endif
284 		dev->priv   = (void*) devbusfn;
285 		dev->init   = dc21x4x_init;
286 		dev->halt   = dc21x4x_halt;
287 		dev->send   = dc21x4x_send;
288 		dev->recv   = dc21x4x_recv;
289 
290 		/* Ensure we're not sleeping. */
291 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
292 
293 		udelay(10 * 1000);
294 
295 #ifndef CONFIG_TULIP_FIX_DAVICOM
296 		read_hw_addr(dev, bis);
297 #endif
298 		eth_register(dev);
299 
300 		card_number++;
301 	}
302 
303 	return card_number;
304 }
305 
dc21x4x_init(struct eth_device * dev,bd_t * bis)306 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
307 {
308 	int		i;
309 	int		devbusfn = (int) dev->priv;
310 
311 	/* Ensure we're not sleeping. */
312 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
313 
314 #ifdef CONFIG_TULIP_FIX_DAVICOM
315 	RESET_DM9102(dev);
316 #else
317 	RESET_DE4X5(dev);
318 #endif
319 
320 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
321 		printf("Error: Cannot reset ethernet controller.\n");
322 		return -1;
323 	}
324 
325 #ifdef CONFIG_TULIP_SELECT_MEDIA
326 	dc21x4x_select_media(dev);
327 #else
328 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
329 #endif
330 
331 	for (i = 0; i < NUM_RX_DESC; i++) {
332 		rx_ring[i].status = cpu_to_le32(R_OWN);
333 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
334 		rx_ring[i].buf = cpu_to_le32(
335 			phys_to_bus((u32)net_rx_packets[i]));
336 #ifdef CONFIG_TULIP_FIX_DAVICOM
337 		rx_ring[i].next = cpu_to_le32(
338 			phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
339 #else
340 		rx_ring[i].next = 0;
341 #endif
342 	}
343 
344 	for (i=0; i < NUM_TX_DESC; i++) {
345 		tx_ring[i].status = 0;
346 		tx_ring[i].des1 = 0;
347 		tx_ring[i].buf = 0;
348 
349 #ifdef CONFIG_TULIP_FIX_DAVICOM
350 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
351 #else
352 		tx_ring[i].next = 0;
353 #endif
354 	}
355 
356 	rxRingSize = NUM_RX_DESC;
357 	txRingSize = NUM_TX_DESC;
358 
359 	/* Write the end of list marker to the descriptor lists. */
360 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
361 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
362 
363 	/* Tell the adapter where the TX/RX rings are located. */
364 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
365 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
366 
367 	START_DE4X5(dev);
368 
369 	tx_new = 0;
370 	rx_new = 0;
371 
372 	send_setup_frame(dev, bis);
373 
374 	return 0;
375 }
376 
dc21x4x_send(struct eth_device * dev,void * packet,int length)377 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
378 {
379 	int		status = -1;
380 	int		i;
381 
382 	if (length <= 0) {
383 		printf("%s: bad packet size: %d\n", dev->name, length);
384 		goto Done;
385 	}
386 
387 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
388 		if (i >= TOUT_LOOP) {
389 			printf("%s: tx error buffer not ready\n", dev->name);
390 			goto Done;
391 		}
392 	}
393 
394 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
395 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
396 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
397 
398 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
399 
400 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
401 		if (i >= TOUT_LOOP) {
402 			printf(".%s: tx buffer not ready\n", dev->name);
403 			goto Done;
404 		}
405 	}
406 
407 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
408 #if 0 /* test-only */
409 		printf("TX error status = 0x%08X\n",
410 			le32_to_cpu(tx_ring[tx_new].status));
411 #endif
412 		tx_ring[tx_new].status = 0x0;
413 		goto Done;
414 	}
415 
416 	status = length;
417 
418  Done:
419     tx_new = (tx_new+1) % NUM_TX_DESC;
420 	return status;
421 }
422 
dc21x4x_recv(struct eth_device * dev)423 static int dc21x4x_recv(struct eth_device* dev)
424 {
425 	s32		status;
426 	int		length    = 0;
427 
428 	for ( ; ; ) {
429 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
430 
431 		if (status & R_OWN) {
432 			break;
433 		}
434 
435 		if (status & RD_LS) {
436 			/* Valid frame status.
437 			 */
438 			if (status & RD_ES) {
439 
440 				/* There was an error.
441 				 */
442 				printf("RX error status = 0x%08X\n", status);
443 			} else {
444 				/* A valid frame received.
445 				 */
446 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
447 
448 				/* Pass the packet up to the protocol
449 				 * layers.
450 				 */
451 				net_process_received_packet(
452 					net_rx_packets[rx_new], length - 4);
453 			}
454 
455 			/* Change buffer ownership for this frame, back
456 			 * to the adapter.
457 			 */
458 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
459 		}
460 
461 		/* Update entry information.
462 		 */
463 		rx_new = (rx_new + 1) % rxRingSize;
464 	}
465 
466 	return length;
467 }
468 
dc21x4x_halt(struct eth_device * dev)469 static void dc21x4x_halt(struct eth_device* dev)
470 {
471 	int		devbusfn = (int) dev->priv;
472 
473 	STOP_DE4X5(dev);
474 	OUTL(dev, 0, DE4X5_SICR);
475 
476 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
477 }
478 
send_setup_frame(struct eth_device * dev,bd_t * bis)479 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
480 {
481 	int		i;
482 	char	setup_frame[SETUP_FRAME_LEN];
483 	char	*pa = &setup_frame[0];
484 
485 	memset(pa, 0xff, SETUP_FRAME_LEN);
486 
487 	for (i = 0; i < ETH_ALEN; i++) {
488 		*(pa + (i & 1)) = dev->enetaddr[i];
489 		if (i & 0x01) {
490 			pa += 4;
491 		}
492 	}
493 
494 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
495 		if (i >= TOUT_LOOP) {
496 			printf("%s: tx error buffer not ready\n", dev->name);
497 			goto Done;
498 		}
499 	}
500 
501 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
502 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
503 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
504 
505 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
506 
507 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
508 		if (i >= TOUT_LOOP) {
509 			printf("%s: tx buffer not ready\n", dev->name);
510 			goto Done;
511 		}
512 	}
513 
514 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
515 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
516 	}
517 	tx_new = (tx_new+1) % NUM_TX_DESC;
518 
519 Done:
520 	return;
521 }
522 
523 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
524 /* SROM Read and write routines.
525  */
526 static void
sendto_srom(struct eth_device * dev,u_int command,u_long addr)527 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
528 {
529 	OUTL(dev, command, addr);
530 	udelay(1);
531 }
532 
533 static int
getfrom_srom(struct eth_device * dev,u_long addr)534 getfrom_srom(struct eth_device* dev, u_long addr)
535 {
536 	s32 tmp;
537 
538 	tmp = INL(dev, addr);
539 	udelay(1);
540 
541 	return tmp;
542 }
543 
544 /* Note: this routine returns extra data bits for size detection. */
do_read_eeprom(struct eth_device * dev,u_long ioaddr,int location,int addr_len)545 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
546 {
547 	int i;
548 	unsigned retval = 0;
549 	int read_cmd = location | (SROM_READ_CMD << addr_len);
550 
551 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
552 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
553 
554 #ifdef DEBUG_SROM
555 	printf(" EEPROM read at %d ", location);
556 #endif
557 
558 	/* Shift the read command bits out. */
559 	for (i = 4 + addr_len; i >= 0; i--) {
560 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
561 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
562 		udelay(10);
563 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
564 		udelay(10);
565 #ifdef DEBUG_SROM2
566 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
567 #endif
568 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
569 	}
570 
571 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
572 
573 #ifdef DEBUG_SROM2
574 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
575 #endif
576 
577 	for (i = 16; i > 0; i--) {
578 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
579 		udelay(10);
580 #ifdef DEBUG_SROM2
581 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
582 #endif
583 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
584 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
585 		udelay(10);
586 	}
587 
588 	/* Terminate the EEPROM access. */
589 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
590 
591 #ifdef DEBUG_SROM2
592 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
593 #endif
594 
595 	return retval;
596 }
597 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
598 
599 /* This executes a generic EEPROM command, typically a write or write
600  * enable. It returns the data output from the EEPROM, and thus may
601  * also be used for reads.
602  */
603 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
do_eeprom_cmd(struct eth_device * dev,u_long ioaddr,int cmd,int cmd_len)604 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
605 {
606 	unsigned retval = 0;
607 
608 #ifdef DEBUG_SROM
609 	printf(" EEPROM op 0x%x: ", cmd);
610 #endif
611 
612 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
613 
614 	/* Shift the command bits out. */
615 	do {
616 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
617 		sendto_srom(dev,dataval, ioaddr);
618 		udelay(10);
619 
620 #ifdef DEBUG_SROM2
621 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
622 #endif
623 
624 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
625 		udelay(10);
626 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
627 	} while (--cmd_len >= 0);
628 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
629 
630 	/* Terminate the EEPROM access. */
631 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
632 
633 #ifdef DEBUG_SROM
634 	printf(" EEPROM result is 0x%5.5x.\n", retval);
635 #endif
636 
637 	return retval;
638 }
639 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
640 
641 #ifndef CONFIG_TULIP_FIX_DAVICOM
read_srom(struct eth_device * dev,u_long ioaddr,int index)642 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
643 {
644 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
645 
646 	return do_eeprom_cmd(dev, ioaddr,
647 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
648 			     | 0xffff, 3 + ee_addr_size + 16);
649 }
650 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
651 
652 #ifdef UPDATE_SROM
write_srom(struct eth_device * dev,u_long ioaddr,int index,int new_value)653 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
654 {
655 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
656 	int i;
657 	unsigned short newval;
658 
659 	udelay(10*1000); /* test-only */
660 
661 #ifdef DEBUG_SROM
662 	printf("ee_addr_size=%d.\n", ee_addr_size);
663 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
664 #endif
665 
666 	/* Enable programming modes. */
667 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
668 
669 	/* Do the actual write. */
670 	do_eeprom_cmd(dev, ioaddr,
671 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
672 		      3 + ee_addr_size + 16);
673 
674 	/* Poll for write finished. */
675 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
676 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
677 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
678 			break;
679 
680 #ifdef DEBUG_SROM
681 	printf(" Write finished after %d ticks.\n", i);
682 #endif
683 
684 	/* Disable programming. */
685 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
686 
687 	/* And read the result. */
688 	newval = do_eeprom_cmd(dev, ioaddr,
689 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
690 			       | 0xffff, 3 + ee_addr_size + 16);
691 #ifdef DEBUG_SROM
692 	printf("  New value at offset %d is %4.4x.\n", index, newval);
693 #endif
694 	return 1;
695 }
696 #endif
697 
698 #ifndef CONFIG_TULIP_FIX_DAVICOM
read_hw_addr(struct eth_device * dev,bd_t * bis)699 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
700 {
701 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
702 	int i, j = 0;
703 
704 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
705 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
706 		*p = le16_to_cpu(tmp);
707 		j += *p++;
708 	}
709 
710 	if ((j == 0) || (j == 0x2fffd)) {
711 		memset (dev->enetaddr, 0, ETH_ALEN);
712 		debug ("Warning: can't read HW address from SROM.\n");
713 		goto Done;
714 	}
715 
716 	return;
717 
718 Done:
719 #ifdef UPDATE_SROM
720 	update_srom(dev, bis);
721 #endif
722 	return;
723 }
724 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
725 
726 #ifdef UPDATE_SROM
update_srom(struct eth_device * dev,bd_t * bis)727 static void update_srom(struct eth_device *dev, bd_t *bis)
728 {
729 	int i;
730 	static unsigned short eeprom[0x40] = {
731 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
732 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
733 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
734 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
735 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
736 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
737 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
738 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
739 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
740 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
741 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
742 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
743 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
744 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
745 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
746 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
747 	};
748 	uchar enetaddr[6];
749 
750 	/* Ethernet Addr... */
751 	if (!eth_env_get_enetaddr("ethaddr", enetaddr))
752 		return;
753 	eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
754 	eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
755 	eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
756 
757 	for (i=0; i<0x40; i++) {
758 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
759 	}
760 }
761 #endif	/* UPDATE_SROM */
762