/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | exponential_test.py | 54 exponential = exponential_lib.Exponential(rate=lam) 71 exponential = exponential_lib.Exponential(rate=rate) 81 exponential = exponential_lib.Exponential(rate=lam) 97 exponential = exponential_lib.Exponential(rate=lam) 109 exponential = exponential_lib.Exponential(rate=lam_v) 118 exponential = exponential_lib.Exponential(rate=lam_v) 128 exponential = exponential_lib.Exponential(rate=lam_v) 139 exponential = exponential_lib.Exponential(rate=lam) 157 exponential = exponential_lib.Exponential(rate=lam) 180 exponential = exponential_lib.Exponential(rate=lam)
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | exponential.py | 41 class Exponential(gamma.Gamma): class 109 super(Exponential, self).__init__( 147 class ExponentialWithSoftplusRate(Exponential):
|
D | distributions.py | 31 from tensorflow.python.ops.distributions.exponential import Exponential
|
/external/syzkaller/vendor/google.golang.org/grpc/internal/backoff/ |
D | backoff.go | 52 type Exponential struct { struct 59 func (bc Exponential) Backoff(retries int) time.Duration { argument
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.-exponential.pbtxt | 1 path: "tensorflow.distributions.Exponential" 3 is_instance: "<class \'tensorflow.python.ops.distributions.exponential.Exponential\'>" 50 …stats\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'True\', \'Exponential\'], "
|
D | tensorflow.distributions.pbtxt | 28 name: "Exponential"
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Elu.pbtxt | 5 See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | distribution_test.py | 41 tfd.Exponential, 231 exp = tfd.Exponential(rate=array_ops.placeholder(dtype=dtypes.float32)) 289 exp = tfd.Exponential(rate=array_ops.placeholder(dtype=dtypes.float32))
|
D | quantized_distribution_test.py | 204 distribution=distributions.Exponential(rate=0.01)) 227 distribution=distributions.Exponential(rate=0.2))
|
D | transformed_distribution_test.py | 282 ds.Exponential(rate=0.25),
|
/external/webrtc/webrtc/base/ |
D | random.h | 51 double Exponential(double lambda);
|
D | random.cc | 81 double Random::Exponential(double lambda) { in Exponential() function in webrtc::Random
|
/external/tensorflow/tensorflow/core/lib/monitoring/ |
D | mobile_sampler.h | 55 static std::unique_ptr<Buckets> Exponential(double scale, in Exponential() function
|
D | sampler.cc | 102 std::unique_ptr<Buckets> Buckets::Exponential(double scale, in Exponential() function in tensorflow::monitoring::Buckets
|
D | sampler_test.cc | 94 Buckets::Exponential(1, 2, 3));
|
D | sampler.h | 84 static std::unique_ptr<Buckets> Exponential(double scale,
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | vector_exponential_linear_operator.py | 202 distribution=exponential.Exponential(rate=array_ops.ones(
|
/external/grpc-grpc/src/cpp/ext/filters/census/ |
D | views.cc | 55 return Aggregation::Distribution(BucketBoundaries::Exponential(17, 1.0, 2.0)); in CountDistributionAggregation()
|
/external/tensorflow/tensorflow/cc/saved_model/ |
D | loader.cc | 55 monitoring::Buckets::Exponential(10, 1.8, 33));
|
/external/deqp/doc/testspecs/GLES3/ |
D | functional.shaders.builtin_functions.precision.txt | 109 * Exponential functions
|
/external/syzkaller/vendor/google.golang.org/grpc/ |
D | clientconn.go | 283 return withBackoff(backoff.Exponential{ 544 cc.dopts.bs = backoff.Exponential{
|
/external/python/cpython2/Doc/library/ |
D | random.rst | 230 Exponential distribution. *lambd* is 1.0 divided by the desired
|
/external/webrtc/webrtc/modules/remote_bitrate_estimator/test/ |
D | bwe_test.cc | 976 static_cast<int64_t>(random.Exponential(1.0f / kMeanMs))); in GetStartingTimesMs()
|
/external/llvm/lib/Target/X86/ |
D | X86.td | 123 "Enable AVX-512 Exponential and Reciprocal Instructions",
|
/external/python/cpython3/Doc/library/ |
D | random.rst | 252 Exponential distribution. *lambd* is 1.0 divided by the desired
|