/external/tensorflow/tensorflow/core/kernels/ |
D | constant_op.cc | 100 REGISTER_KERNEL(GPU, Eigen::half); 101 REGISTER_KERNEL(GPU, bfloat16); 102 REGISTER_KERNEL(GPU, float); 103 REGISTER_KERNEL(GPU, double); 104 REGISTER_KERNEL(GPU, uint8); 105 REGISTER_KERNEL(GPU, int8); 106 REGISTER_KERNEL(GPU, qint8); 107 REGISTER_KERNEL(GPU, uint16); 108 REGISTER_KERNEL(GPU, int16); 109 REGISTER_KERNEL(GPU, qint16); [all …]
|
D | depthwise_conv_ops_test.cc | 36 enum class Device { CPU, GPU }; enumerator 40 if (device == Device::GPU) { in Run() 104 TEST_F(DepthwiseConvOpTest, DepthwiseConvFloatGpu) { Run<float>(Device::GPU); } in TEST_F() 106 Run<double>(Device::GPU); in TEST_F() 109 Run<Eigen::half>(Device::GPU); in TEST_F()
|
D | cwise_op_reciprocal.cc | 22 REGISTER4(UnaryOp, GPU, "Inv", functor::inverse, float, Eigen::half, double, 29 REGISTER3(SimpleBinaryOp, GPU, "InvGrad", functor::inverse_grad, float, 36 REGISTER4(UnaryOp, GPU, "Reciprocal", functor::inverse, float, Eigen::half, 46 REGISTER3(SimpleBinaryOp, GPU, "ReciprocalGrad", functor::inverse_grad, float,
|
D | cwise_op_div.cc | 31 REGISTER9(BinaryOp, GPU, "Div", functor::div, float, Eigen::half, double, uint8, 33 REGISTER4(BinaryOp, GPU, "TruncateDiv", functor::div, uint8, uint16, int16, 35 REGISTER5(BinaryOp, GPU, "RealDiv", functor::div, float, Eigen::half, double, 37 REGISTER2(BinaryOp, GPU, "DivNoNan", functor::div_no_nan, float, double);
|
D | cwise_op_igammas.cc | 24 REGISTER2(BinaryOp, GPU, "Igamma", functor::igamma, float, double); 25 REGISTER2(BinaryOp, GPU, "IgammaGradA", functor::igamma_grad_a, float, double); 26 REGISTER2(BinaryOp, GPU, "Igammac", functor::igammac, float, double);
|
D | sparse_xent_op.cc | 129 REGISTER(GPU, float, int32) 130 REGISTER(GPU, float, int64) 131 REGISTER(GPU, Eigen::half, int32) 132 REGISTER(GPU, Eigen::half, int64)
|
D | cwise_op_zeta.cc | 23 REGISTER2(BinaryOp, GPU, "Zeta", functor::zeta, float, double); 24 REGISTER2(BinaryOp, GPU, "Polygamma", functor::polygamma, float, double);
|
D | cwise_op_bessel.cc | 24 REGISTER3(UnaryOp, GPU, "BesselI0e", functor::bessel_i0e, Eigen::half, float, 26 REGISTER3(UnaryOp, GPU, "BesselI1e", functor::bessel_i1e, Eigen::half, float,
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | lstm_layer_inference.pbtxt | 6 device: "/device:GPU:*" 31 device: "/device:GPU:*" 53 device: "/device:GPU:*" 76 device: "/device:GPU:*" 107 device: "/device:GPU:*" 120 device: "/device:GPU:*" 133 device: "/device:GPU:*" 144 device: "/device:GPU:*" 182 device: "/device:GPU:*" 214 device: "/device:GPU:*" [all …]
|
/external/llvm/lib/Target/AMDGPU/ |
D | AMDGPUSubtarget.cpp | 38 StringRef GPU, StringRef FS) { in initializeSubtargetDependencies() argument 53 ParseSubtargetFeatures(GPU, FullFS); in initializeSubtargetDependencies() 70 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS, in AMDGPUSubtarget() argument 72 : AMDGPUGenSubtargetInfo(TT, GPU, FS), in AMDGPUSubtarget() 119 InstrItins(getInstrItineraryForCPU(GPU)) { in AMDGPUSubtarget() 120 initializeSubtargetDependencies(TT, GPU, FS); in AMDGPUSubtarget() 181 R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, in R600Subtarget() argument 183 AMDGPUSubtarget(TT, GPU, FS, TM), in R600Subtarget() 188 SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS, in SISubtarget() argument 190 AMDGPUSubtarget(TT, GPU, FS, TM), in SISubtarget()
|
D | AMDGPUTargetMachine.cpp | 125 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { in getGPUOrDefault() argument 126 if (!GPU.empty()) in getGPUOrDefault() 127 return GPU; in getGPUOrDefault() 185 StringRef GPU = getGPUName(F); in getSubtargetImpl() local 188 SmallString<128> SubtargetKey(GPU); in getSubtargetImpl() 197 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); in getSubtargetImpl() 226 StringRef GPU = getGPUName(F); in getSubtargetImpl() local 229 SmallString<128> SubtargetKey(GPU); in getSubtargetImpl() 238 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); in getSubtargetImpl()
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | gpu.md | 1 # TensorFlow Lite GPU delegate 4 accelerators. This document describes how to preview the experimental GPU backend using the 11 resulting in lower latency. In the best scenario, inference on the GPU may now 17 Another benefit with GPU inference is its power efficiency. GPUs carry out the 23 …rimental GPU delegate is to follow the below tutorials, which go through building our classificati… 28 [Experimental GPU Delegate for Android](https://youtu.be/Xkhgre8r5G0) video. 38 #### Step 2. Edit `app/build.gradle` to use the experimental GPU AAR 54 enabling the GPU. Change from quantized to a float model and then click GPU to 55 run on the GPU. 62 [Experimental GPU Delegate for iOS](https://youtu.be/a5H4Zwjp49c) video. [all …]
|
D | gpu_advanced.md | 1 # TensorFlow Lite on GPU 4 hardware accelerators. This document describes how to use the GPU backend using 8 ## Benefits of GPU Acceleration 17 on the GPU may run fast enough to become suitable for real-time applications 25 neural network on a GPU may eliminate this concern. 29 Another benefit that comes with GPU inference is its power efficiency. A GPU 35 TensorFlow Lite on GPU supports the following ops in 16-bit and 32-bit float 62 Run TensorFlow Lite on GPU with `TfLiteDelegate`. In Java, you can specify the 66 // NEW: Prepare GPU delegate. 84 To use TensorFlow Lite on GPU, get the GPU delegate via `NewGpuDelegate()` and [all …]
|
D | delegates.md | 15 Instead of relying on the CPU, some devices have hardware accelerators, such as GPU or DSP, that al… 18 ## Using the experimental GPU delegate 20 …sorFlow Lite provides an experimental GPU delegate that can be used to accelerate models on device… 22 …GPU delegate, see [TensorFlow Lite on GPU](https://www.tensorflow.org/lite/performance/gpu_advance…
|
/external/autotest/client/site_tests/graphics_GpuReset/ |
D | control | 7 PURPOSE = 'Reset the GPU and check recovery mechanism.' 9 Detection of udev event notification of a GPU hang. 23 The purpose of this test is to exercise the GPU failure path. We craft an 24 erroneous GPU command packet and send it to the GPU, and wait for a udev 25 event notifying us of a GPU hang. If the event doesn't come back, the test
|
/external/tensorflow/tensorflow/core/protobuf/ |
D | config.proto | 17 // Fraction of the available GPU memory to allocate for each process. 18 // 1 means to allocate all of the GPU memory, 0.5 means the process 19 // allocates up to ~50% of the available GPU memory. 21 // GPU memory is pre-allocated unless the allow_growth option is enabled. 24 // the amount of memory available on the GPU device by using host memory as a 37 // GPU memory region, instead starting small and growing as needed. 40 // The type of GPU allocation strategy to use. 55 // A comma-separated list of GPU ids that determines the 'visible' 56 // to 'virtual' mapping of GPU devices. For example, if TensorFlow 57 // can see 8 GPU devices in the process, and one wanted to map [all …]
|
/external/tensorflow/tensorflow/python/eager/ |
D | benchmarks_test.py | 56 GPU = "/device:GPU:0" variable 173 if device == GPU: 205 self._benchmark_create_tensor([[3.0]], dtypes.float32.as_datatype_enum, GPU) 212 GPU) 218 self._benchmark_create_tensor([[3]], dtypes.int32.as_datatype_enum, GPU) 225 np.array([[3]], dtype=np.int32), dtypes.int32.as_datatype_enum, GPU) 263 with context.device(GPU): 275 with context.device(GPU): 491 with context.device(GPU): 499 with context.device(GPU): [all …]
|
/external/swiftshader/third_party/llvm-7.0/llvm/lib/Target/AMDGPU/ |
D | AMDGPUSubtarget.cpp | 48 StringRef GPU, StringRef FS) { in initializeSubtargetDependencies() argument 51 ParseSubtargetFeatures(GPU, FullFS); in initializeSubtargetDependencies() 68 StringRef GPU, StringRef FS) { in initializeSubtargetDependencies() argument 94 ParseSubtargetFeatures(GPU, FullFS); in initializeSubtargetDependencies() 145 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, in GCNSubtarget() argument 147 AMDGPUGenSubtargetInfo(TT, GPU, FS), in GCNSubtarget() 211 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), in GCNSubtarget() 447 R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, in R600Subtarget() argument 449 R600GenSubtargetInfo(TT, GPU, FS), in R600Subtarget() 462 TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)), in R600Subtarget() [all …]
|
/external/tensorflow/tensorflow/core/common_runtime/ |
D | ring_gatherer_test.cc | 631 DEF_TEST(FLOAT, GPU, 1, 2, 1, 1, 0) 632 DEF_TEST(FLOAT, GPU, 1, 2, 1, 2, 0) 633 DEF_TEST(FLOAT, GPU, 1, 2, 1, 8, 0) 634 DEF_TEST(FLOAT, GPU, 1, 2, 1, 16, 0) 635 DEF_TEST(FLOAT, GPU, 1, 2, 1, 1001, 0) 636 DEF_TEST(FLOAT, GPU, 1, 8, 1, 1001, 0) 637 DEF_TEST(FLOAT, GPU, 1, 8, 1, 4096, 0) 638 DEF_TEST(FLOAT, GPU, 1, 8, 1, 4095, 0) 639 DEF_TEST(FLOAT, GPU, 1, 8, 1, 32768, 0) 640 DEF_TEST(FLOAT, GPU, 1, 4, 1, 32768, 0) [all …]
|
D | ring_reducer_test.cc | 712 DEF_TEST(FLOAT, GPU, 1, 2, 1, 1, 0) 713 DEF_TEST(FLOAT, GPU, 1, 2, 1, 2, 0) 714 DEF_TEST(FLOAT, GPU, 1, 2, 1, 8, 0) 715 DEF_TEST(FLOAT, GPU, 1, 2, 1, 16, 0) 716 DEF_TEST(FLOAT, GPU, 1, 2, 1, 1001, 0) 717 DEF_TEST(FLOAT, GPU, 1, 8, 1, 1001, 0) 718 DEF_TEST(FLOAT, GPU, 1, 8, 1, 4096, 0) 719 DEF_TEST(FLOAT, GPU, 1, 8, 3, 4095, 0) 720 DEF_TEST(FLOAT, GPU, 1, 8, 3, 1045991, 0) 721 DEF_TEST(FLOAT, GPU, 1, 4, 4, 1045991, 0) [all …]
|
/external/skia/resources/lua/ |
D | slides_content2.lua | 53 - SkImageFilter w/ CPU and GPU implementations 81 - GPU optimizations 95 - GPU 107 - GPU
|
/external/skqp/platform_tools/android/apps/skqp/src/main/assets/resources/lua/ |
D | slides_content2.lua | 53 - SkImageFilter w/ CPU and GPU implementations 81 - GPU optimizations 95 - GPU 107 - GPU
|
/external/skqp/resources/lua/ |
D | slides_content2.lua | 53 - SkImageFilter w/ CPU and GPU implementations 81 - GPU optimizations 95 - GPU 107 - GPU
|
/external/eigen/bench/tensors/ |
D | README | 3 … suite, in which each benchmark comes in 2 flavors: one that runs on CPU, and one that runs on GPU. 8 To compile the floating point GPU benchmarks, simply call: 11 …GPU tensor benchmarks that uses half floats (aka fp16) instead of regular floats. To compile these…
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
D | backend_configs.proto | 5 // Backend configs for XLA:GPU. 7 // These are metadata that the GPU backend attaches to HloInstrucitons and later 24 // true, cudnn may choose not to use tensor cores, e.g. because the GPU or
|