/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Igammac.pbtxt | 3 summary: "Compute the upper regularized incomplete Gamma function `Q(a, x)`." 5 The upper regularized incomplete Gamma function is defined as: 7 \\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\\) 11 \\(Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt\\) 16 Gamma function.
|
D | api_def_Igamma.pbtxt | 3 summary: "Compute the lower regularized incomplete Gamma function `P(a, x)`." 5 The lower regularized incomplete Gamma function is defined as: 8 \\(P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)\\) 14 is the lower incomplete Gamma function. 17 Gamma function.
|
D | api_def_Lgamma.pbtxt | 3 summary: "Computes the log of the absolute value of `Gamma(x)` element-wise."
|
D | api_def_RandomGammaGrad.pbtxt | 4 summary: "Computes the derivative of a Gamma random sample w.r.t. `alpha`."
|
D | api_def_Digamma.pbtxt | 5 `Gamma(x)`), element-wise.
|
D | api_def_RandomGamma.pbtxt | 39 summary: "Outputs random values from the Gamma distribution(s) described by alpha."
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | gamma_test.py | 55 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 69 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 84 gamma = gamma_lib.Gamma(concentration=1., rate=rate) 95 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 115 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 137 gamma = gamma_lib.Gamma(concentration=alpha, rate=beta) 148 gamma = gamma_lib.Gamma(concentration=alpha_v, rate=beta_v) 158 gamma = gamma_lib.Gamma(concentration=alpha_v, rate=beta_v) 167 gamma = gamma_lib.Gamma( 176 gamma = gamma_lib.Gamma( [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
D | BetaDistributionImpl.java | 22 import org.apache.commons.math.special.Gamma; 121 z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta); in recomputeZ()
|
D | TDistributionImpl.java | 25 import org.apache.commons.math.special.Gamma; 118 …return FastMath.exp(Gamma.logGamma(nPlus1Over2) - 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(… in density() 119 Gamma.logGamma(n/2) - nPlus1Over2 * FastMath.log(1 + x * x /n)); in density()
|
D | GammaDistributionImpl.java | 24 import org.apache.commons.math.special.Gamma; 100 ret = Gamma.regularizedGammaP(alpha, x / beta); in cumulativeProbability() 206 …th.pow(x / beta, alpha - 1) / beta * FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha)); in density()
|
D | WeibullDistributionImpl.java | 24 import org.apache.commons.math.special.Gamma; 316 return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh))); in calculateNumericalMean() 335 FastMath.exp(Gamma.logGamma(1 + (2 / sh))) - in calculateNumericalVariance()
|
D | SaddlePointExpansion.java | 19 import org.apache.commons.math.special.Gamma; 114 ret = Gamma.logGamma(z + 1.0) - (z + 0.5) * FastMath.log(z) + in getStirlingError()
|
D | PoissonDistributionImpl.java | 24 import org.apache.commons.math.special.Gamma; 219 return Gamma.regularizedGammaQ((double) x + 1, mean, epsilon, maxIterations); in cumulativeProbability()
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | gamma.py | 47 class Gamma(distribution.Distribution): class 173 super(Gamma, self).__init__( 288 class GammaWithSoftplusConcentrationRate(Gamma): 314 @kullback_leibler.RegisterKL(Gamma, Gamma)
|
D | distributions.py | 32 from tensorflow.python.ops.distributions.gamma import Gamma
|
D | exponential.py | 41 class Exponential(gamma.Gamma):
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/special/ |
D | Beta.java | 196 ret = Gamma.logGamma(a) + Gamma.logGamma(b) - in logBeta() 197 Gamma.logGamma(a + b); in logBeta()
|
D | Erf.java | 58 double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000); in erf() 88 final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000); in erfc()
|
D | Gamma.java | 30 public class Gamma { class 74 private Gamma() { in Gamma() method in Gamma
|
/external/pdfium/third_party/lcms/ |
D | 0026-more-unsupported-characters.patch | 65 - // Y = (Max <96> Min) * (X ^ Gamma) + Min 66 + // Y = (Max - Min) * (X ^ Gamma) + Min 69 - // a = (Max <96> Min) ^ ( 1 / Gamma) 70 + // a = (Max - Min) ^ ( 1 / Gamma)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.-gamma.pbtxt | 1 path: "tensorflow.distributions.Gamma" 3 is_instance: "<class \'tensorflow.python.ops.distributions.gamma.Gamma\'>" 49 …w_nan_stats\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'True\', \'Gamma\'], "
|
D | tensorflow.distributions.pbtxt | 36 name: "Gamma"
|
/external/clang/test/Sema/ |
D | exprs.c | 80 void test7(int *P, _Complex float Gamma) { in test7() argument 81 …P = (P-42) + Gamma*4; // expected-error {{invalid operands to binary expression ('int *' and '_Co… in test7()
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | chi2.py | 37 class Chi2(gamma.Gamma):
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
D | invert_test.py | 79 distribution=gamma_lib.Gamma(concentration=1., rate=2.),
|