1;================================================================== 2; Copyright ARM Ltd 2005. All rights reserved. 3; 4; Cortex-A8 Dhrystone example - Startup Code 5;================================================================== 6 7 PRESERVE8 8 AREA CORTEXA8, CODE, READONLY 9 10 ENTRY 11 12; Standard definitions of mode bits and interrupt (I & F) flags in PSRs 13 14Mode_USR EQU 0x10 15Mode_FIQ EQU 0x11 16Mode_IRQ EQU 0x12 17Mode_SVC EQU 0x13 18Mode_ABT EQU 0x17 19Mode_UNDEF EQU 0x1B 20Mode_SYS EQU 0x1F 21 22I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled 23F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled 24 25;================================================================== 26; Disable Cortex-A8 MMU if enabled 27;================================================================== 28 29 EXPORT Start 30 31Start 32 33 MRC p15, 0, r0, c1, c0, 0 ; Read CP15 Control Register into r0 34 TST r0, #0x1 ; Is the MMU enabled? 35 BICNE r0, r0, #0x1 ; Clear bit 0 36 MCRNE p15, 0, r0, c1, c0, 0 ; Write value back 37 38;================================================================== 39; Initialise Supervisor Mode Stack 40; Note stack must be 8 byte aligned. 41;================================================================== 42 43 IMPORT ||Image$$STACK$$ZI$$Limit|| ; Linker symbol from scatter file 44 LDR SP, =||Image$$STACK$$ZI$$Limit|| 45 46;================================================================== 47; TLB maintenance, Invalidate Data and Instruction TLB's 48;================================================================== 49 50 MOV r0,#0 51 MCR p15, 0, r0, c8, c7, 0 ; Cortex-A8 I-TLB and D-TLB invalidation 52 53;================================================================== 54; Cache Invalidation code for Cortex-A8 55;================================================================== 56 57 ; Invalidate L1 Instruction Cache 58 59 MRC p15, 1, r0, c0, c0, 1 ; Read CLIDR 60 TST r0, #0x3 ; Harvard Cache? 61 MOV r0, #0 62 MCRNE p15, 0, r0, c7, c5, 0 ; Invalidate Instruction Cache 63 64 ; Invalidate Data/Unified Caches 65 66 MRC p15, 1, r0, c0, c0, 1 ; Read CLIDR 67 ANDS r3, r0, #&7000000 68 MOV r3, r3, LSR #23 ; Total cache levels << 1 69 BEQ Finished 70 71 MOV r10, #0 ; R10 holds current cache level << 1 72Loop1 ADD r2, r10, r10, LSR #1 ; R2 holds cache "Set" position 73 MOV r1, r0, LSR r2 ; Bottom 3 bits are the Cache-type for this level 74 AND r1, R1, #7 ; Get those 3 bits alone 75 CMP r1, #2 76 BLT Skip ; No cache or only instruction cache at this level 77 78 MCR p15, 2, r10, c0, c0, 0 ; Write the Cache Size selection register 79 MOV r1, #0 80 MCR p15, 0, r1, c7, c5, 4 ; PrefetchFlush to sync the change to the CacheSizeID reg 81 MRC p15, 1, r1, c0, c0, 0 ; Reads current Cache Size ID register 82 AND r2, r1, #&7 ; Extract the line length field 83 ADD r2, r2, #4 ; Add 4 for the line length offset (log2 16 bytes) 84 LDR r4, =0x3FF 85 ANDS r4, r4, r1, LSR #3 ; R4 is the max number on the way size (right aligned) 86 CLZ r5, r4 ; R5 is the bit position of the way size increment 87 LDR r7, =0x00007FFF 88 ANDS r7, r7, r1, LSR #13 ; R7 is the max number of the index size (right aligned) 89 90Loop2 MOV r9, r4 ; R9 working copy of the max way size (right aligned) 91 92Loop3 ORR r11, r10, r9, LSL r5 ; Factor in the Way number and cache number into R11 93 ORR r11, r11, r7, LSL r2 ; Factor in the Set number 94 MCR p15, 0, r11, c7, c14, 2 ; Clean and Invalidate by set/way 95 SUBS r9, r9, #1 ; Decrement the Way number 96 BGE Loop3 97 SUBS r7, r7, #1 ; Decrement the Set number 98 BGE Loop2 99Skip ADD r10, r10, #2 ; increment the cache number 100 CMP r3, r10 101 BGT Loop1 102 103Finished 104 105 106;=================================================================== 107; Cortex-A8 MMU Configuration 108; Set translation table base 109;=================================================================== 110 111 112 IMPORT ||Image$$TTB$$ZI$$Base|| ; from scatter file.; 113 114 ; Cortex-A8 supports two translation tables 115 ; Configure translation table base (TTB) control register cp15,c2 116 ; to a value of all zeros, indicates we are using TTB register 0. 117 118 MOV r0,#0x0 119 MCR p15, 0, r0, c2, c0, 2 120 121 ; write the address of our page table base to TTB register 0.; 122 ; We are setting to outer-noncachable [4:3] is zero 123 124 LDR r0,=||Image$$TTB$$ZI$$Base|| 125 MCR p15, 0, r0, c2, c0, 0 126 127 128;=================================================================== 129; Cortex-A8 PAGE TABLE generation, using standard Arch v6 tables 130; 131; AP[11:10] - Access Permissions = b11, Read/Write Access 132; Domain[8:5] - Domain = b1111, Domain 15 133; Type[1:0] - Descriptor Type = b10, 1Mb descriptors 134; 135; TEX C B 136; 000 0 0 Strongly Ordered 137; 001 1 1 Outer and inner write back, write allocate Normal 138;=================================================================== 139 140 LDR r1,=0xfff ; loop counter 141 LDR r2,=2_00000000000000000000110111100010 142 143 ; r0 contains the address of the translation table base 144 ; r1 is loop counter 145 ; r2 is level1 descriptor (bits 19:0) 146 147 ; use loop counter to create 4096 individual table entries 148 ; this writes from address 0x7FFC down to 0x4000 in word steps (4bytes). 149 150init_ttb_1 151 152 ORR r3, r2, r1, LSL#20 ; r3 now contains full level1 descriptor to write 153 STR r3, [r0, r1, LSL#2] ; str table entry at TTB base + loopcount*4 154 SUBS r1, r1, #1 ; decrement loop counter 155 BPL init_ttb_1 156 157 ; In this example we will change the cacheable attribute in the first descriptor. 158 ; Virtual memory from 0 to 1MB will be cacheable (write back mode). 159 ; TEX[14:12]=001 and CB[3:2]= 11, Outer and inner write back, write allocate. 160 161 ORR r3,r3,#2_0000000001100 ; Set CB bits 162 ORR r3,r3,#2_1000000000000 ; Set TEX bits 163 STR r3,[r0] 164 165 ADD r2, r3, #0x100000 ; alter r3 to have correct base address for second descriptor (flat mapping) 166 STR r2, [r0, #4] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 167 168 ADD r2, r3, #0x200000 ; alter r3 to have correct base address for 3 descriptor (flat mapping) 169 STR r2, [r0, #8] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 170 171 ADD r2, r3, #0x300000 ; alter r3 to have correct base address for 4 descriptor (flat mapping) 172 STR r2, [r0, #0xc] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 173 174 ADD r2, r3, #0x400000 ; alter r3 to have correct base address for 5 descriptor (flat mapping) 175 STR r2, [r0, #0x10] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 176 177 ADD r2, r3, #0x500000 ; alter r3 to have correct base address for 6 descriptor (flat mapping) 178 STR r2, [r0, #0x14] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 179 180 ADD r2, r3, #0x600000 ; alter r3 to have correct base address for 7 descriptor (flat mapping) 181 STR r2, [r0, #0x18] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 182 183 ADD r2, r3, #0x700000 ; alter r3 to have correct base address for 8 descriptor (flat mapping) 184 STR r2, [r0, #0x1c] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 185 186 ADD r2, r3, #0x800000 ; alter r3 to have correct base address for 9 descriptor (flat mapping) 187 STR r2, [r0, #0x20] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 188 189 ADD r2, r3, #0x900000 ; alter r3 to have correct base address for 10 descriptor (flat mapping) 190 STR r2, [r0, #0x24] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 191 192 ADD r2, r3, #0xa00000 ; alter r3 to have correct base address for 11 descriptor (flat mapping) 193 STR r2, [r0, #0x28] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 194 195 ADD r2, r3, #0xb00000 ; alter r3 to have correct base address for 12 descriptor (flat mapping) 196 STR r2, [r0, #0x2c] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 197 198 ADD r2, r3, #0xc00000 ; alter r3 to have correct base address for 13 descriptor (flat mapping) 199 STR r2, [r0, #0x30] ; store the new descriptor at r0 + 4 (overwrite second section descriptor) 200 201;=================================================================== 202; Setup domain control register - Enable all domains to client mode 203;=================================================================== 204 205 MRC p15, 0, r0, c3, c0, 0 ; Read Domain Access Control Register 206 LDR r0, =0x55555555 ; Initialize every domain entry to b01 (client) 207 MCR p15, 0, r0, c3, c0, 0 ; Write Domain Access Control Register 208 209;=================================================================== 210; Setup L2 Cache - L2 Cache Auxiliary Control 211;=================================================================== 212 213 MOV r0, #0 214 ;MCR p15, 1, r0, c9, c0, 2 ; Write L2 Auxilary Control Register 215 216;================================================================== 217; Enable access to NEON/VFP by enabling access to Coprocessors 10 and 11. 218; Enables Full Access i.e. in both priv and non priv modes 219;================================================================== 220 221 MRC p15, 0, r0, c1, c0, 2 ; read CP access register 222 ORR r0, r0, #(0x3 <<20) ; enable access CP 10 223 ORR r0, r0, #(0x3 <<22) ; enable access CP 11 224 MCR p15, 0, r0, c1, c0, 2 ; write CP access register back 225 226;================================================================== 227; Switch on the VFP and Neon Hardware 228;================================================================= 229 230 MOV r0, #0 ; Set up a register 231 ORR r0, r0, #(0x1 << 30) 232 FMXR FPEXC, r0 ; Write FPEXC register, EN bit set. 233 234;=================================================================== 235; Enable MMU and Branch to __main 236;=================================================================== 237 238 IMPORT __main ; before MMU enabled import label to __main 239 LDR r12,=__main ; save this in register for possible long jump 240 241 242 MRC p15, 0, r0, c1, c0, 0 ; read CP15 register 1 into r0 243 ORR r0, r0, #0x1 ; enable MMU before scatter loading 244 MCR p15, 0, r0, c1, c0, 0 ; write CP15 register 1 245 246 247; Now the MMU is enabled, virtual to physical address translations will occur. 248; This will affect the next instruction fetches. 249; 250; The two instructions currently in the ARM pipeline will have been fetched 251; before the MMU was enabled. This property is useful because the next two 252; instructions are safe even if new instruction fetches fail. If this routine 253; was mapped out of the new virtual memory map, the branch to __main would 254; still succeed. 255 256 BX r12 ; branch to __main C library entry point 257 258 END ; mark the end of this file 259 260