1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_PROPERTY_DETAILS_H_
6 #define V8_PROPERTY_DETAILS_H_
7
8 #include "include/v8.h"
9 #include "src/allocation.h"
10 // TODO(ishell): remove once FLAG_track_constant_fields is removed.
11 #include "src/flags.h"
12 #include "src/utils.h"
13
14 namespace v8 {
15 namespace internal {
16
17 // ES6 6.1.7.1
18 enum PropertyAttributes {
19 NONE = ::v8::None,
20 READ_ONLY = ::v8::ReadOnly,
21 DONT_ENUM = ::v8::DontEnum,
22 DONT_DELETE = ::v8::DontDelete,
23
24 ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE,
25
26 SEALED = DONT_DELETE,
27 FROZEN = SEALED | READ_ONLY,
28
29 ABSENT = 64, // Used in runtime to indicate a property is absent.
30 // ABSENT can never be stored in or returned from a descriptor's attributes
31 // bitfield. It is only used as a return value meaning the attributes of
32 // a non-existent property.
33 };
34
35
36 enum PropertyFilter {
37 ALL_PROPERTIES = 0,
38 ONLY_WRITABLE = 1,
39 ONLY_ENUMERABLE = 2,
40 ONLY_CONFIGURABLE = 4,
41 SKIP_STRINGS = 8,
42 SKIP_SYMBOLS = 16,
43 ONLY_ALL_CAN_READ = 32,
44 ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS,
45 };
46 // Enable fast comparisons of PropertyAttributes against PropertyFilters.
47 STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE));
48 STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY));
49 STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM));
50 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE));
51 STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) &
52 ALL_ATTRIBUTES_MASK) == 0);
53 STATIC_ASSERT(ALL_PROPERTIES ==
54 static_cast<PropertyFilter>(v8::PropertyFilter::ALL_PROPERTIES));
55 STATIC_ASSERT(ONLY_WRITABLE ==
56 static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_WRITABLE));
57 STATIC_ASSERT(ONLY_ENUMERABLE ==
58 static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_ENUMERABLE));
59 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(
60 v8::PropertyFilter::ONLY_CONFIGURABLE));
61 STATIC_ASSERT(SKIP_STRINGS ==
62 static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_STRINGS));
63 STATIC_ASSERT(SKIP_SYMBOLS ==
64 static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_SYMBOLS));
65
66 class Smi;
67 class TypeInfo;
68
69 // Order of kinds is significant.
70 // Must fit in the BitField PropertyDetails::KindField.
71 enum PropertyKind { kData = 0, kAccessor = 1 };
72
73 // Order of modes is significant.
74 // Must fit in the BitField PropertyDetails::LocationField.
75 enum PropertyLocation { kField = 0, kDescriptor = 1 };
76
77 // Order of modes is significant.
78 // Must fit in the BitField PropertyDetails::ConstnessField.
79 enum class PropertyConstness { kMutable = 0, kConst = 1 };
80
81 // TODO(ishell): remove once constant field tracking is done.
82 const PropertyConstness kDefaultFieldConstness =
83 FLAG_track_constant_fields ? PropertyConstness::kConst
84 : PropertyConstness::kMutable;
85
86 class Representation {
87 public:
88 enum Kind {
89 kNone,
90 kInteger8,
91 kUInteger8,
92 kInteger16,
93 kUInteger16,
94 kSmi,
95 kInteger32,
96 kDouble,
97 kHeapObject,
98 kTagged,
99 kExternal,
100 kNumRepresentations
101 };
102
Representation()103 Representation() : kind_(kNone) { }
104
None()105 static Representation None() { return Representation(kNone); }
Tagged()106 static Representation Tagged() { return Representation(kTagged); }
Integer8()107 static Representation Integer8() { return Representation(kInteger8); }
UInteger8()108 static Representation UInteger8() { return Representation(kUInteger8); }
Integer16()109 static Representation Integer16() { return Representation(kInteger16); }
UInteger16()110 static Representation UInteger16() { return Representation(kUInteger16); }
Smi()111 static Representation Smi() { return Representation(kSmi); }
Integer32()112 static Representation Integer32() { return Representation(kInteger32); }
Double()113 static Representation Double() { return Representation(kDouble); }
HeapObject()114 static Representation HeapObject() { return Representation(kHeapObject); }
External()115 static Representation External() { return Representation(kExternal); }
116
FromKind(Kind kind)117 static Representation FromKind(Kind kind) { return Representation(kind); }
118
Equals(const Representation & other)119 bool Equals(const Representation& other) const {
120 return kind_ == other.kind_;
121 }
122
IsCompatibleForLoad(const Representation & other)123 bool IsCompatibleForLoad(const Representation& other) const {
124 return (IsDouble() && other.IsDouble()) ||
125 (!IsDouble() && !other.IsDouble());
126 }
127
IsCompatibleForStore(const Representation & other)128 bool IsCompatibleForStore(const Representation& other) const {
129 return Equals(other);
130 }
131
is_more_general_than(const Representation & other)132 bool is_more_general_than(const Representation& other) const {
133 if (kind_ == kExternal && other.kind_ == kNone) return true;
134 if (kind_ == kExternal && other.kind_ == kExternal) return false;
135 if (kind_ == kNone && other.kind_ == kExternal) return false;
136
137 DCHECK_NE(kind_, kExternal);
138 DCHECK_NE(other.kind_, kExternal);
139 if (IsHeapObject()) return other.IsNone();
140 if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false;
141 if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false;
142 return kind_ > other.kind_;
143 }
144
fits_into(const Representation & other)145 bool fits_into(const Representation& other) const {
146 return other.is_more_general_than(*this) || other.Equals(*this);
147 }
148
generalize(Representation other)149 Representation generalize(Representation other) {
150 if (other.fits_into(*this)) return *this;
151 if (other.is_more_general_than(*this)) return other;
152 return Representation::Tagged();
153 }
154
size()155 int size() const {
156 DCHECK(!IsNone());
157 if (IsInteger8() || IsUInteger8()) {
158 return sizeof(uint8_t);
159 }
160 if (IsInteger16() || IsUInteger16()) {
161 return sizeof(uint16_t);
162 }
163 if (IsInteger32()) {
164 return sizeof(uint32_t);
165 }
166 return kPointerSize;
167 }
168
kind()169 Kind kind() const { return static_cast<Kind>(kind_); }
IsNone()170 bool IsNone() const { return kind_ == kNone; }
IsInteger8()171 bool IsInteger8() const { return kind_ == kInteger8; }
IsUInteger8()172 bool IsUInteger8() const { return kind_ == kUInteger8; }
IsInteger16()173 bool IsInteger16() const { return kind_ == kInteger16; }
IsUInteger16()174 bool IsUInteger16() const { return kind_ == kUInteger16; }
IsTagged()175 bool IsTagged() const { return kind_ == kTagged; }
IsSmi()176 bool IsSmi() const { return kind_ == kSmi; }
IsSmiOrTagged()177 bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); }
IsInteger32()178 bool IsInteger32() const { return kind_ == kInteger32; }
IsSmiOrInteger32()179 bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); }
IsDouble()180 bool IsDouble() const { return kind_ == kDouble; }
IsHeapObject()181 bool IsHeapObject() const { return kind_ == kHeapObject; }
IsExternal()182 bool IsExternal() const { return kind_ == kExternal; }
IsSpecialization()183 bool IsSpecialization() const {
184 return IsInteger8() || IsUInteger8() ||
185 IsInteger16() || IsUInteger16() ||
186 IsSmi() || IsInteger32() || IsDouble();
187 }
188 const char* Mnemonic() const;
189
190 private:
Representation(Kind k)191 explicit Representation(Kind k) : kind_(k) { }
192
193 // Make sure kind fits in int8.
194 STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
195
196 int8_t kind_;
197 };
198
199
200 static const int kDescriptorIndexBitCount = 10;
201 static const int kFirstInobjectPropertyOffsetBitCount = 7;
202 // The maximum number of descriptors we want in a descriptor array. It should
203 // fit in a page and also the following should hold:
204 // kMaxNumberOfDescriptors + kFieldsAdded <= PropertyArray::kMaxLength.
205 static const int kMaxNumberOfDescriptors = (1 << kDescriptorIndexBitCount) - 4;
206 static const int kInvalidEnumCacheSentinel =
207 (1 << kDescriptorIndexBitCount) - 1;
208
209 enum class PropertyCellType {
210 // Meaningful when a property cell does not contain the hole.
211 kUndefined, // The PREMONOMORPHIC of property cells.
212 kConstant, // Cell has been assigned only once.
213 kConstantType, // Cell has been assigned only one type.
214 kMutable, // Cell will no longer be tracked as constant.
215
216 // Meaningful when a property cell contains the hole.
217 kUninitialized = kUndefined, // Cell has never been initialized.
218 kInvalidated = kConstant, // Cell has been deleted, invalidated or never
219 // existed.
220
221 // For dictionaries not holding cells.
222 kNoCell = kMutable,
223 };
224
225 enum class PropertyCellConstantType {
226 kSmi,
227 kStableMap,
228 };
229
230
231 // PropertyDetails captures type and attributes for a property.
232 // They are used both in property dictionaries and instance descriptors.
233 class PropertyDetails BASE_EMBEDDED {
234 public:
235 // Property details for dictionary mode properties/elements.
236 PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
237 PropertyCellType cell_type, int dictionary_index = 0) {
238 value_ = KindField::encode(kind) | LocationField::encode(kField) |
239 AttributesField::encode(attributes) |
240 DictionaryStorageField::encode(dictionary_index) |
241 PropertyCellTypeField::encode(cell_type);
242 }
243
244 // Property details for fast mode properties.
245 PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
246 PropertyLocation location, PropertyConstness constness,
247 Representation representation, int field_index = 0) {
248 value_ = KindField::encode(kind) | AttributesField::encode(attributes) |
249 LocationField::encode(location) |
250 ConstnessField::encode(constness) |
251 RepresentationField::encode(EncodeRepresentation(representation)) |
252 FieldIndexField::encode(field_index);
253 }
254
255 static PropertyDetails Empty(
256 PropertyCellType cell_type = PropertyCellType::kNoCell) {
257 return PropertyDetails(kData, NONE, cell_type);
258 }
259
pointer()260 int pointer() const { return DescriptorPointer::decode(value_); }
261
set_pointer(int i)262 PropertyDetails set_pointer(int i) const {
263 return PropertyDetails(value_, i);
264 }
265
set_cell_type(PropertyCellType type)266 PropertyDetails set_cell_type(PropertyCellType type) const {
267 PropertyDetails details = *this;
268 details.value_ = PropertyCellTypeField::update(details.value_, type);
269 return details;
270 }
271
set_index(int index)272 PropertyDetails set_index(int index) const {
273 PropertyDetails details = *this;
274 details.value_ = DictionaryStorageField::update(details.value_, index);
275 return details;
276 }
277
CopyWithRepresentation(Representation representation)278 PropertyDetails CopyWithRepresentation(Representation representation) const {
279 return PropertyDetails(value_, representation);
280 }
CopyWithConstness(PropertyConstness constness)281 PropertyDetails CopyWithConstness(PropertyConstness constness) const {
282 return PropertyDetails(value_, constness);
283 }
CopyAddAttributes(PropertyAttributes new_attributes)284 PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const {
285 new_attributes =
286 static_cast<PropertyAttributes>(attributes() | new_attributes);
287 return PropertyDetails(value_, new_attributes);
288 }
289
290 // Conversion for storing details as Object*.
291 explicit inline PropertyDetails(Smi* smi);
292 inline Smi* AsSmi() const;
293
EncodeRepresentation(Representation representation)294 static uint8_t EncodeRepresentation(Representation representation) {
295 return representation.kind();
296 }
297
DecodeRepresentation(uint32_t bits)298 static Representation DecodeRepresentation(uint32_t bits) {
299 return Representation::FromKind(static_cast<Representation::Kind>(bits));
300 }
301
kind()302 PropertyKind kind() const { return KindField::decode(value_); }
location()303 PropertyLocation location() const { return LocationField::decode(value_); }
constness()304 PropertyConstness constness() const { return ConstnessField::decode(value_); }
305
attributes()306 PropertyAttributes attributes() const {
307 return AttributesField::decode(value_);
308 }
309
dictionary_index()310 int dictionary_index() const {
311 return DictionaryStorageField::decode(value_);
312 }
313
representation()314 Representation representation() const {
315 return DecodeRepresentation(RepresentationField::decode(value_));
316 }
317
field_index()318 int field_index() const { return FieldIndexField::decode(value_); }
319
320 inline int field_width_in_words() const;
321
IsValidIndex(int index)322 static bool IsValidIndex(int index) {
323 return DictionaryStorageField::is_valid(index);
324 }
325
IsReadOnly()326 bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; }
IsConfigurable()327 bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; }
IsDontEnum()328 bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; }
IsEnumerable()329 bool IsEnumerable() const { return !IsDontEnum(); }
cell_type()330 PropertyCellType cell_type() const {
331 return PropertyCellTypeField::decode(value_);
332 }
333
334 // Bit fields in value_ (type, shift, size). Must be public so the
335 // constants can be embedded in generated code.
336 class KindField : public BitField<PropertyKind, 0, 1> {};
337 class LocationField : public BitField<PropertyLocation, KindField::kNext, 1> {
338 };
339 class ConstnessField
340 : public BitField<PropertyConstness, LocationField::kNext, 1> {};
341 class AttributesField
342 : public BitField<PropertyAttributes, ConstnessField::kNext, 3> {};
343 static const int kAttributesReadOnlyMask =
344 (READ_ONLY << AttributesField::kShift);
345 static const int kAttributesDontDeleteMask =
346 (DONT_DELETE << AttributesField::kShift);
347 static const int kAttributesDontEnumMask =
348 (DONT_ENUM << AttributesField::kShift);
349
350 // Bit fields for normalized objects.
351 class PropertyCellTypeField
352 : public BitField<PropertyCellType, AttributesField::kNext, 2> {};
353 class DictionaryStorageField
354 : public BitField<uint32_t, PropertyCellTypeField::kNext, 23> {};
355
356 // Bit fields for fast objects.
357 class RepresentationField
358 : public BitField<uint32_t, AttributesField::kNext, 4> {};
359 class DescriptorPointer
360 : public BitField<uint32_t, RepresentationField::kNext,
361 kDescriptorIndexBitCount> {}; // NOLINT
362 class FieldIndexField : public BitField<uint32_t, DescriptorPointer::kNext,
363 kDescriptorIndexBitCount> {
364 }; // NOLINT
365
366 // All bits for both fast and slow objects must fit in a smi.
367 STATIC_ASSERT(DictionaryStorageField::kNext <= 31);
368 STATIC_ASSERT(FieldIndexField::kNext <= 31);
369
370 static const int kInitialIndex = 1;
371
372 #ifdef OBJECT_PRINT
373 // For our gdb macros, we should perhaps change these in the future.
374 void Print(bool dictionary_mode);
375 #endif
376
377 enum PrintMode {
378 kPrintAttributes = 1 << 0,
379 kPrintFieldIndex = 1 << 1,
380 kPrintRepresentation = 1 << 2,
381 kPrintPointer = 1 << 3,
382
383 kForProperties = kPrintFieldIndex,
384 kForTransitions = kPrintAttributes,
385 kPrintFull = -1,
386 };
387 void PrintAsSlowTo(std::ostream& out);
388 void PrintAsFastTo(std::ostream& out, PrintMode mode = kPrintFull);
389
390 private:
PropertyDetails(int value,int pointer)391 PropertyDetails(int value, int pointer) {
392 value_ = DescriptorPointer::update(value, pointer);
393 }
PropertyDetails(int value,Representation representation)394 PropertyDetails(int value, Representation representation) {
395 value_ = RepresentationField::update(
396 value, EncodeRepresentation(representation));
397 }
PropertyDetails(int value,PropertyConstness constness)398 PropertyDetails(int value, PropertyConstness constness) {
399 value_ = ConstnessField::update(value, constness);
400 }
PropertyDetails(int value,PropertyAttributes attributes)401 PropertyDetails(int value, PropertyAttributes attributes) {
402 value_ = AttributesField::update(value, attributes);
403 }
404
405 uint32_t value_;
406 };
407
408 // kField location is more general than kDescriptor, kDescriptor generalizes
409 // only to itself.
IsGeneralizableTo(PropertyLocation a,PropertyLocation b)410 inline bool IsGeneralizableTo(PropertyLocation a, PropertyLocation b) {
411 return b == kField || a == kDescriptor;
412 }
413
414 // PropertyConstness::kMutable constness is more general than
415 // VariableMode::kConst, VariableMode::kConst generalizes only to itself.
IsGeneralizableTo(PropertyConstness a,PropertyConstness b)416 inline bool IsGeneralizableTo(PropertyConstness a, PropertyConstness b) {
417 return b == PropertyConstness::kMutable || a == PropertyConstness::kConst;
418 }
419
GeneralizeConstness(PropertyConstness a,PropertyConstness b)420 inline PropertyConstness GeneralizeConstness(PropertyConstness a,
421 PropertyConstness b) {
422 return a == PropertyConstness::kMutable ? PropertyConstness::kMutable : b;
423 }
424
425 std::ostream& operator<<(std::ostream& os,
426 const PropertyAttributes& attributes);
427 } // namespace internal
428 } // namespace v8
429
430 #endif // V8_PROPERTY_DETAILS_H_
431