Home
last modified time | relevance | path

Searched refs:MatrixXd (Results 1 – 25 of 109) sorted by relevance

12345

/external/eigen/test/
Dinplace_decomposition.cpp86 CALL_SUBTEST_1(( inplace<LLT<Ref<MatrixXd> >, MatrixXd>(true,true) )); in test_inplace_decomposition()
89 CALL_SUBTEST_2(( inplace<LDLT<Ref<MatrixXd> >, MatrixXd>(true,true) )); in test_inplace_decomposition()
92 CALL_SUBTEST_3(( inplace<PartialPivLU<Ref<MatrixXd> >, MatrixXd>(true,false) )); in test_inplace_decomposition()
95 CALL_SUBTEST_4(( inplace<FullPivLU<Ref<MatrixXd> >, MatrixXd>(true,false) )); in test_inplace_decomposition()
98 CALL_SUBTEST_5(( inplace<HouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) )); in test_inplace_decomposition()
101 CALL_SUBTEST_6(( inplace<ColPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) )); in test_inplace_decomposition()
104 CALL_SUBTEST_7(( inplace<FullPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) )); in test_inplace_decomposition()
107 …CALL_SUBTEST_8(( inplace<CompleteOrthogonalDecomposition<Ref<MatrixXd> >, MatrixXd>(false,false) )… in test_inplace_decomposition()
Deigensolver_generic.cpp110 CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); in test_eigensolver_generic()
114 CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); in test_eigensolver_generic()
115 CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); in test_eigensolver_generic()
122 CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); in test_eigensolver_generic()
132 MatrixXd A(1,1); in test_eigensolver_generic()
134 Eigen::EigenSolver<MatrixXd> solver(A); in test_eigensolver_generic()
142 MatrixXd a(3,3); in test_eigensolver_generic()
146 Eigen::EigenSolver<MatrixXd> eig(a); in test_eigensolver_generic()
153 MatrixXd a(2,2); in test_eigensolver_generic()
156 Eigen::EigenSolver<MatrixXd> eig(a); in test_eigensolver_generic()
Devaluators.cpp244 MatrixXd mat1(6,6), mat2(6,6); in test_evaluators()
245 VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); in test_evaluators()
361 arr2.matrix() = MatrixXd::Identity(6,6); in test_evaluators()
362 VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); in test_evaluators()
392 MatrixXd mat1, mat2, mat1ref, mat2ref; in test_evaluators()
393 mat1ref = mat1 = MatrixXd::Random(6, 6); in test_evaluators()
394 mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); in test_evaluators()
438 MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6); in test_evaluators()
440 VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); in test_evaluators()
443 …VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>… in test_evaluators()
[all …]
/external/eigen/doc/snippets/
DTutorial_AdvancedInitialization_ThreeWays.cpp2 MatrixXd mat1(size, size);
3 mat1.topLeftCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2);
4 mat1.topRightCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2);
5 mat1.bottomLeftCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2);
6 mat1.bottomRightCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2);
9 MatrixXd mat2(size, size);
16 MatrixXd mat3(size, size);
17 mat3 << MatrixXd::Zero(size/2, size/2), MatrixXd::Identity(size/2, size/2),
18 MatrixXd::Identity(size/2, size/2), MatrixXd::Zero(size/2, size/2);
DSelfAdjointEigenSolver_compute_MatrixType2.cpp1 MatrixXd X = MatrixXd::Random(5,5);
2 MatrixXd A = X * X.transpose();
3 X = MatrixXd::Random(5,5);
4 MatrixXd B = X * X.transpose();
6 GeneralizedSelfAdjointEigenSolver<MatrixXd> es(A,B,EigenvaluesOnly);
DTridiagonalization_Tridiagonalization_MatrixType.cpp1 MatrixXd X = MatrixXd::Random(5,5);
2 MatrixXd A = X + X.transpose();
4 Tridiagonalization<MatrixXd> triOfA(A);
5 MatrixXd Q = triOfA.matrixQ();
7 MatrixXd T = triOfA.matrixT();
DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp1 MatrixXd X = MatrixXd::Random(5,5);
2 MatrixXd A = X + X.transpose();
5 SelfAdjointEigenSolver<MatrixXd> es(A);
15 MatrixXd D = es.eigenvalues().asDiagonal();
16 MatrixXd V = es.eigenvectors();
DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp1 MatrixXd X = MatrixXd::Random(5,5);
2 MatrixXd A = X + X.transpose();
4 X = MatrixXd::Random(5,5);
5 MatrixXd B = X * X.transpose();
8 GeneralizedSelfAdjointEigenSolver<MatrixXd> es(A,B);
DSelfAdjointEigenSolver_operatorSqrt.cpp1 MatrixXd X = MatrixXd::Random(4,4);
2 MatrixXd A = X * X.transpose();
5 SelfAdjointEigenSolver<MatrixXd> es(A);
6 MatrixXd sqrtA = es.operatorSqrt();
DPartialPivLU_solve.cpp1 MatrixXd A = MatrixXd::Random(3,3);
2 MatrixXd B = MatrixXd::Random(3,2);
5 MatrixXd X = A.lu().solve(B);
DEigenSolver_pseudoEigenvectors.cpp1 MatrixXd A = MatrixXd::Random(6,6);
4 EigenSolver<MatrixXd> es(A);
5 MatrixXd D = es.pseudoEigenvalueMatrix();
6 MatrixXd V = es.pseudoEigenvectors();
DRealSchur_RealSchur_MatrixType.cpp1 MatrixXd A = MatrixXd::Random(6,6);
4 RealSchur<MatrixXd> schur(A);
8 MatrixXd U = schur.matrixU();
9 MatrixXd T = schur.matrixT();
DSelfAdjointEigenSolver_operatorInverseSqrt.cpp1 MatrixXd X = MatrixXd::Random(4,4);
2 MatrixXd A = X * X.transpose();
5 SelfAdjointEigenSolver<MatrixXd> es(A);
DEigenSolver_eigenvalues.cpp1 MatrixXd ones = MatrixXd::Ones(3,3);
2 EigenSolver<MatrixXd> es(ones, false);
DSelfAdjointEigenSolver_eigenvalues.cpp1 MatrixXd ones = MatrixXd::Ones(3,3);
2 SelfAdjointEigenSolver<MatrixXd> es(ones);
DSelfAdjointEigenSolver_eigenvectors.cpp1 MatrixXd ones = MatrixXd::Ones(3,3);
2 SelfAdjointEigenSolver<MatrixXd> es(ones);
DEigenSolver_eigenvectors.cpp1 MatrixXd ones = MatrixXd::Ones(3,3);
2 EigenSolver<MatrixXd> es(ones);
DLLT_example.cpp1 MatrixXd A(3,3);
5 LLT<MatrixXd> lltOfA(A); // compute the Cholesky decomposition of A
6 MatrixXd L = lltOfA.matrixL(); // retrieve factor L in the decomposition
DTridiagonalization_decomposeInPlace.cpp1 MatrixXd X = MatrixXd::Random(5,5);
2 MatrixXd A = X + X.transpose();
/external/eigen/demos/mix_eigen_and_c/
Dbinary_library.cpp23 inline MatrixXd& c_to_eigen(C_MatrixXd* ptr) in c_to_eigen()
25 return *reinterpret_cast<MatrixXd*>(ptr); in c_to_eigen()
28 inline const MatrixXd& c_to_eigen(const C_MatrixXd* ptr) in c_to_eigen()
30 return *reinterpret_cast<const MatrixXd*>(ptr); in c_to_eigen()
33 inline C_MatrixXd* eigen_to_c(MatrixXd& ref) in eigen_to_c()
38 inline const C_MatrixXd* eigen_to_c(const MatrixXd& ref) in eigen_to_c()
45 inline Map<MatrixXd>& c_to_eigen(C_Map_MatrixXd* ptr) in c_to_eigen()
47 return *reinterpret_cast<Map<MatrixXd>*>(ptr); in c_to_eigen()
50 inline const Map<MatrixXd>& c_to_eigen(const C_Map_MatrixXd* ptr) in c_to_eigen()
52 return *reinterpret_cast<const Map<MatrixXd>*>(ptr); in c_to_eigen()
[all …]
/external/eigen/doc/examples/
DTutorialLinAlgExComputeSolveError.cpp9 MatrixXd A = MatrixXd::Random(100,100); in main()
10 MatrixXd b = MatrixXd::Random(100,50); in main()
11 MatrixXd x = A.fullPivLu().solve(b); in main()
DTutorialInplaceLU.cpp15 MatrixXd A(2,2); in main()
21 PartialPivLU<Ref<MatrixXd> > lu(A); in main()
30 MatrixXd A0(2,2); A0 << 2, -1, 1, 3; in main()
50 MatrixXd A1(2,2); in main()
DQuickStart_example2_dynamic.cpp9 MatrixXd m = MatrixXd::Random(3,3); in main()
10 m = (m + MatrixXd::Constant(3,3,1.2)) * 50; in main()
/external/eigen/unsupported/doc/examples/
DMatrixSine.cpp8 MatrixXd A = MatrixXd::Random(3,3); in main()
11 MatrixXd sinA = A.sin(); in main()
14 MatrixXd cosA = A.cos(); in main()
/external/eigen/unsupported/test/
DNumericalDiff.cpp53 int actual_df(const VectorXd &x, MatrixXd &fjac) const in actual_df()
73 MatrixXd jac(15,3); in test_forward()
74 MatrixXd actual_jac(15,3); in test_forward()
94 MatrixXd jac(15,3); in test_central()
95 MatrixXd actual_jac(15,3); in test_central()

12345