/external/eigen/test/ |
D | inplace_decomposition.cpp | 86 CALL_SUBTEST_1(( inplace<LLT<Ref<MatrixXd> >, MatrixXd>(true,true) )); in test_inplace_decomposition() 89 CALL_SUBTEST_2(( inplace<LDLT<Ref<MatrixXd> >, MatrixXd>(true,true) )); in test_inplace_decomposition() 92 CALL_SUBTEST_3(( inplace<PartialPivLU<Ref<MatrixXd> >, MatrixXd>(true,false) )); in test_inplace_decomposition() 95 CALL_SUBTEST_4(( inplace<FullPivLU<Ref<MatrixXd> >, MatrixXd>(true,false) )); in test_inplace_decomposition() 98 CALL_SUBTEST_5(( inplace<HouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) )); in test_inplace_decomposition() 101 CALL_SUBTEST_6(( inplace<ColPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) )); in test_inplace_decomposition() 104 CALL_SUBTEST_7(( inplace<FullPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false,false) )); in test_inplace_decomposition() 107 …CALL_SUBTEST_8(( inplace<CompleteOrthogonalDecomposition<Ref<MatrixXd> >, MatrixXd>(false,false) )… in test_inplace_decomposition()
|
D | eigensolver_generic.cpp | 110 CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); in test_eigensolver_generic() 114 CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); in test_eigensolver_generic() 115 CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); in test_eigensolver_generic() 122 CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); in test_eigensolver_generic() 132 MatrixXd A(1,1); in test_eigensolver_generic() 134 Eigen::EigenSolver<MatrixXd> solver(A); in test_eigensolver_generic() 142 MatrixXd a(3,3); in test_eigensolver_generic() 146 Eigen::EigenSolver<MatrixXd> eig(a); in test_eigensolver_generic() 153 MatrixXd a(2,2); in test_eigensolver_generic() 156 Eigen::EigenSolver<MatrixXd> eig(a); in test_eigensolver_generic()
|
D | evaluators.cpp | 244 MatrixXd mat1(6,6), mat2(6,6); in test_evaluators() 245 VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); in test_evaluators() 361 arr2.matrix() = MatrixXd::Identity(6,6); in test_evaluators() 362 VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); in test_evaluators() 392 MatrixXd mat1, mat2, mat1ref, mat2ref; in test_evaluators() 393 mat1ref = mat1 = MatrixXd::Random(6, 6); in test_evaluators() 394 mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); in test_evaluators() 438 MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6); in test_evaluators() 440 VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); in test_evaluators() 443 …VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>… in test_evaluators() [all …]
|
/external/eigen/doc/snippets/ |
D | Tutorial_AdvancedInitialization_ThreeWays.cpp | 2 MatrixXd mat1(size, size); 3 mat1.topLeftCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2); 4 mat1.topRightCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2); 5 mat1.bottomLeftCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2); 6 mat1.bottomRightCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2); 9 MatrixXd mat2(size, size); 16 MatrixXd mat3(size, size); 17 mat3 << MatrixXd::Zero(size/2, size/2), MatrixXd::Identity(size/2, size/2), 18 MatrixXd::Identity(size/2, size/2), MatrixXd::Zero(size/2, size/2);
|
D | SelfAdjointEigenSolver_compute_MatrixType2.cpp | 1 MatrixXd X = MatrixXd::Random(5,5); 2 MatrixXd A = X * X.transpose(); 3 X = MatrixXd::Random(5,5); 4 MatrixXd B = X * X.transpose(); 6 GeneralizedSelfAdjointEigenSolver<MatrixXd> es(A,B,EigenvaluesOnly);
|
D | Tridiagonalization_Tridiagonalization_MatrixType.cpp | 1 MatrixXd X = MatrixXd::Random(5,5); 2 MatrixXd A = X + X.transpose(); 4 Tridiagonalization<MatrixXd> triOfA(A); 5 MatrixXd Q = triOfA.matrixQ(); 7 MatrixXd T = triOfA.matrixT();
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 1 MatrixXd X = MatrixXd::Random(5,5); 2 MatrixXd A = X + X.transpose(); 5 SelfAdjointEigenSolver<MatrixXd> es(A); 15 MatrixXd D = es.eigenvalues().asDiagonal(); 16 MatrixXd V = es.eigenvectors();
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 1 MatrixXd X = MatrixXd::Random(5,5); 2 MatrixXd A = X + X.transpose(); 4 X = MatrixXd::Random(5,5); 5 MatrixXd B = X * X.transpose(); 8 GeneralizedSelfAdjointEigenSolver<MatrixXd> es(A,B);
|
D | SelfAdjointEigenSolver_operatorSqrt.cpp | 1 MatrixXd X = MatrixXd::Random(4,4); 2 MatrixXd A = X * X.transpose(); 5 SelfAdjointEigenSolver<MatrixXd> es(A); 6 MatrixXd sqrtA = es.operatorSqrt();
|
D | PartialPivLU_solve.cpp | 1 MatrixXd A = MatrixXd::Random(3,3); 2 MatrixXd B = MatrixXd::Random(3,2); 5 MatrixXd X = A.lu().solve(B);
|
D | EigenSolver_pseudoEigenvectors.cpp | 1 MatrixXd A = MatrixXd::Random(6,6); 4 EigenSolver<MatrixXd> es(A); 5 MatrixXd D = es.pseudoEigenvalueMatrix(); 6 MatrixXd V = es.pseudoEigenvectors();
|
D | RealSchur_RealSchur_MatrixType.cpp | 1 MatrixXd A = MatrixXd::Random(6,6); 4 RealSchur<MatrixXd> schur(A); 8 MatrixXd U = schur.matrixU(); 9 MatrixXd T = schur.matrixT();
|
D | SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 1 MatrixXd X = MatrixXd::Random(4,4); 2 MatrixXd A = X * X.transpose(); 5 SelfAdjointEigenSolver<MatrixXd> es(A);
|
D | EigenSolver_eigenvalues.cpp | 1 MatrixXd ones = MatrixXd::Ones(3,3); 2 EigenSolver<MatrixXd> es(ones, false);
|
D | SelfAdjointEigenSolver_eigenvalues.cpp | 1 MatrixXd ones = MatrixXd::Ones(3,3); 2 SelfAdjointEigenSolver<MatrixXd> es(ones);
|
D | SelfAdjointEigenSolver_eigenvectors.cpp | 1 MatrixXd ones = MatrixXd::Ones(3,3); 2 SelfAdjointEigenSolver<MatrixXd> es(ones);
|
D | EigenSolver_eigenvectors.cpp | 1 MatrixXd ones = MatrixXd::Ones(3,3); 2 EigenSolver<MatrixXd> es(ones);
|
D | LLT_example.cpp | 1 MatrixXd A(3,3); 5 LLT<MatrixXd> lltOfA(A); // compute the Cholesky decomposition of A 6 MatrixXd L = lltOfA.matrixL(); // retrieve factor L in the decomposition
|
D | Tridiagonalization_decomposeInPlace.cpp | 1 MatrixXd X = MatrixXd::Random(5,5); 2 MatrixXd A = X + X.transpose();
|
/external/eigen/demos/mix_eigen_and_c/ |
D | binary_library.cpp | 23 inline MatrixXd& c_to_eigen(C_MatrixXd* ptr) in c_to_eigen() 25 return *reinterpret_cast<MatrixXd*>(ptr); in c_to_eigen() 28 inline const MatrixXd& c_to_eigen(const C_MatrixXd* ptr) in c_to_eigen() 30 return *reinterpret_cast<const MatrixXd*>(ptr); in c_to_eigen() 33 inline C_MatrixXd* eigen_to_c(MatrixXd& ref) in eigen_to_c() 38 inline const C_MatrixXd* eigen_to_c(const MatrixXd& ref) in eigen_to_c() 45 inline Map<MatrixXd>& c_to_eigen(C_Map_MatrixXd* ptr) in c_to_eigen() 47 return *reinterpret_cast<Map<MatrixXd>*>(ptr); in c_to_eigen() 50 inline const Map<MatrixXd>& c_to_eigen(const C_Map_MatrixXd* ptr) in c_to_eigen() 52 return *reinterpret_cast<const Map<MatrixXd>*>(ptr); in c_to_eigen() [all …]
|
/external/eigen/doc/examples/ |
D | TutorialLinAlgExComputeSolveError.cpp | 9 MatrixXd A = MatrixXd::Random(100,100); in main() 10 MatrixXd b = MatrixXd::Random(100,50); in main() 11 MatrixXd x = A.fullPivLu().solve(b); in main()
|
D | TutorialInplaceLU.cpp | 15 MatrixXd A(2,2); in main() 21 PartialPivLU<Ref<MatrixXd> > lu(A); in main() 30 MatrixXd A0(2,2); A0 << 2, -1, 1, 3; in main() 50 MatrixXd A1(2,2); in main()
|
D | QuickStart_example2_dynamic.cpp | 9 MatrixXd m = MatrixXd::Random(3,3); in main() 10 m = (m + MatrixXd::Constant(3,3,1.2)) * 50; in main()
|
/external/eigen/unsupported/doc/examples/ |
D | MatrixSine.cpp | 8 MatrixXd A = MatrixXd::Random(3,3); in main() 11 MatrixXd sinA = A.sin(); in main() 14 MatrixXd cosA = A.cos(); in main()
|
/external/eigen/unsupported/test/ |
D | NumericalDiff.cpp | 53 int actual_df(const VectorXd &x, MatrixXd &fjac) const in actual_df() 73 MatrixXd jac(15,3); in test_forward() 74 MatrixXd actual_jac(15,3); in test_forward() 94 MatrixXd jac(15,3); in test_central() 95 MatrixXd actual_jac(15,3); in test_central()
|