/external/tensorflow/tensorflow/examples/android/src/org/tensorflow/demo/ |
D | TensorFlowYoloDetector.java | 37 private static final int NUM_CLASSES = 20; field in TensorFlowYoloDetector 171 new float[gridWidth * gridHeight * (NUM_CLASSES + 5) * NUM_BOXES_PER_BLOCK]; in recognizeImage() 191 (gridWidth * (NUM_BOXES_PER_BLOCK * (NUM_CLASSES + 5))) * y in recognizeImage() 192 + (NUM_BOXES_PER_BLOCK * (NUM_CLASSES + 5)) * x in recognizeImage() 193 + (NUM_CLASSES + 5) * b; in recognizeImage() 212 final float[] classes = new float[NUM_CLASSES]; in recognizeImage() 213 for (int c = 0; c < NUM_CLASSES; ++c) { in recognizeImage() 218 for (int c = 0; c < NUM_CLASSES; ++c) { in recognizeImage()
|
/external/tensorflow/tensorflow/python/keras/ |
D | regularizers_test.py | 30 NUM_CLASSES = 2 variable 37 model.add(keras.layers.Dense(NUM_CLASSES, 48 num_classes=NUM_CLASSES) 49 y_train = keras.utils.to_categorical(y_train, NUM_CLASSES) 50 y_test = keras.utils.to_categorical(y_test, NUM_CLASSES)
|
D | callbacks_v1_test.py | 38 NUM_CLASSES = 2 variable 57 num_classes=NUM_CLASSES) 85 model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax')) 166 num_classes=NUM_CLASSES) 192 output1 = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden) 193 output2 = keras.layers.Dense(NUM_CLASSES, activation='softmax')(hidden) 270 num_classes=NUM_CLASSES) 281 model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax')) 366 num_classes=NUM_CLASSES) 371 num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) [all …]
|
D | callbacks_test.py | 57 NUM_CLASSES = 2 variable 273 keras.layers.Dense(NUM_CLASSES, activation='softmax') 287 num_classes=NUM_CLASSES) 299 model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax')) 443 num_classes=NUM_CLASSES) 447 num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) 503 num_classes=NUM_CLASSES) 572 num_classes=NUM_CLASSES) 576 num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) 619 num_classes=NUM_CLASSES) [all …]
|
/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn_test.py | 31 NUM_CLASSES = 2 variable 42 model.add(keras.layers.Dense(NUM_CLASSES)) 55 num_classes=NUM_CLASSES) 65 assert prediction in range(NUM_CLASSES) 68 assert proba.shape == (TEST_SAMPLES, NUM_CLASSES) 91 num_classes=NUM_CLASSES)
|
/external/tensorflow/tensorflow/contrib/distribute/python/examples/ |
D | keras_mnist.py | 27 NUM_CLASSES = 10 variable 62 y_train = tf.keras.utils.to_categorical(y_train, NUM_CLASSES) 63 y_test = tf.keras.utils.to_categorical(y_test, NUM_CLASSES) 101 model.add(tf.keras.layers.Dense(NUM_CLASSES, activation='softmax'))
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist.py | 38 NUM_CLASSES = 10 variable 77 tf.truncated_normal([hidden2_units, NUM_CLASSES], 80 biases = tf.Variable(tf.zeros([NUM_CLASSES]),
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
D | mnist_util.py | 25 NUM_CLASSES = 10 variable 49 return tf.keras.utils.to_categorical(y, NUM_CLASSES)
|
D | use_mnist_cnn.py | 68 net = tf.keras.layers.Dense(mnist_util.NUM_CLASSES, activation='softmax',
|
D | export_mnist_cnn.py | 77 net = tf.keras.layers.Dense(mnist_util.NUM_CLASSES, activation='softmax',
|
/external/tensorflow/tensorflow/contrib/model_pruning/examples/cifar10/ |
D | cifar10_pruning.py | 50 NUM_CLASSES = cifar10_input.NUM_CLASSES variable 261 'weights', [192, NUM_CLASSES], stddev=1 / 192.0, wd=0.0) 262 biases = _variable_on_cpu('biases', [NUM_CLASSES],
|
D | cifar10_input.py | 32 NUM_CLASSES = 10 variable
|
/external/tensorflow/tensorflow/contrib/factorization/examples/ |
D | mnist.py | 45 NUM_CLASSES = 10 variable 174 tf.truncated_normal([hidden2_units, NUM_CLASSES], 177 biases = tf.Variable(tf.zeros([NUM_CLASSES]),
|
/external/tensorflow/tensorflow/compiler/xla/g3doc/tutorials/ |
D | xla_compile.ipynb | 130 "NUM_CLASSES = 10\n", 183 " y = tf.keras.layers.Dense(NUM_CLASSES).apply(x)\n",
|