• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/contrib/coder/kernels/range_coder.h"
17 
18 #include <cmath>
19 
20 #include "tensorflow/core/lib/random/distribution_sampler.h"
21 #include "tensorflow/core/lib/random/philox_random.h"
22 #include "tensorflow/core/lib/random/random.h"
23 #include "tensorflow/core/lib/random/simple_philox.h"
24 #include "tensorflow/core/platform/test.h"
25 
26 namespace tensorflow {
27 namespace {
RangeEncodeDecodeTest(int precision,random::SimplePhilox * gen)28 void RangeEncodeDecodeTest(int precision, random::SimplePhilox* gen) {
29   constexpr int kAlphabetSize = 256;
30 
31   std::vector<float> distribution_weight;
32   distribution_weight.reserve(kAlphabetSize);
33   for (int i = 1; i <= kAlphabetSize; ++i) {
34     distribution_weight.push_back(std::pow(static_cast<float>(i), -2.0f));
35   }
36 
37   random::DistributionSampler sampler(distribution_weight);
38 
39   const int multiplier = (precision > 7) ? 32 : 1;
40   std::vector<int32> histogram(kAlphabetSize, multiplier - 1);
41 
42   const int data_size =
43       (multiplier << precision) - histogram.size() * (multiplier - 1);
44   CHECK_GE(data_size, 0);
45   std::vector<uint8> data(data_size);
46   for (uint8& x : data) {
47     x = sampler.Sample(gen);
48     ++histogram[x];
49   }
50 
51   std::vector<int32> cdf(histogram.size() + 1, 0);
52   int partial_sum = 0;
53   for (int i = 0; i < histogram.size(); ++i) {
54     partial_sum += histogram[i];
55     cdf[i + 1] = partial_sum / multiplier;
56   }
57 
58   ASSERT_EQ(cdf.front(), 0);
59   ASSERT_EQ(cdf.back(), 1 << precision);
60 
61   std::vector<double> ideal_code_length(histogram.size());
62   const double normalizer = static_cast<double>(1 << precision);
63   for (int i = 0; i < ideal_code_length.size(); ++i) {
64     ideal_code_length[i] = -std::log2((cdf[i + 1] - cdf[i]) / normalizer);
65   }
66 
67   RangeEncoder encoder(precision);
68   string encoded;
69   double ideal_length = 0.0;
70   for (uint8 x : data) {
71     encoder.Encode(cdf[x], cdf[x + 1], &encoded);
72     ideal_length += ideal_code_length[x];
73   }
74   encoder.Finalize(&encoded);
75 
76   LOG(INFO) << "Encoded string length (bits): " << 8 * encoded.size()
77             << ", whereas ideal " << ideal_length << " ("
78             << (8 * encoded.size()) / ideal_length << " of ideal) "
79             << " (ideal compression rate " << ideal_length / (8 * data.size())
80             << ")";
81 
82   RangeDecoder decoder(encoded, precision);
83   for (int i = 0; i < data.size(); ++i) {
84     const int32 decoded = decoder.Decode(cdf);
85     ASSERT_EQ(decoded, static_cast<int32>(data[i])) << i;
86   }
87 }
88 
TEST(RangeCoderTest,Precision1To11)89 TEST(RangeCoderTest, Precision1To11) {
90   random::PhiloxRandom gen(random::New64(), random::New64());
91   random::SimplePhilox rand(&gen);
92   const int precision = 1 + rand.Uniform(11);
93   RangeEncodeDecodeTest(precision, &rand);
94 }
95 
TEST(RangeCoderTest,Precision12To16)96 TEST(RangeCoderTest, Precision12To16) {
97   random::PhiloxRandom gen(random::New64(), random::New64());
98   random::SimplePhilox rand(&gen);
99   for (int precision = 12; precision < 17; ++precision) {
100     RangeEncodeDecodeTest(precision, &rand);
101   }
102 }
103 
TEST(RangeCoderTest,FinalizeState0)104 TEST(RangeCoderTest, FinalizeState0) {
105   constexpr int kPrecision = 2;
106 
107   string output;
108   RangeEncoder encoder(kPrecision);
109   encoder.Encode(0, 2, &output);
110   encoder.Finalize(&output);
111 
112   RangeDecoder decoder(output, kPrecision);
113   EXPECT_EQ(decoder.Decode({0, 2, 4}), 0);
114 }
115 }  // namespace
116 }  // namespace tensorflow
117