/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_operators.py | 33 ragged_tensor.RaggedTensor.__getitem__ = ragged_getitem.ragged_tensor_getitem 36 ragged_tensor.RaggedTensor.__ge__ = math_ops.greater_equal 37 ragged_tensor.RaggedTensor.__gt__ = math_ops.greater 38 ragged_tensor.RaggedTensor.__le__ = math_ops.less_equal 39 ragged_tensor.RaggedTensor.__lt__ = math_ops.less 42 ragged_tensor.RaggedTensor.__and__ = math_ops.logical_and 43 ragged_tensor.RaggedTensor.__rand__ = _right(math_ops.logical_and) 44 ragged_tensor.RaggedTensor.__invert__ = math_ops.logical_not 45 ragged_tensor.RaggedTensor.__ror__ = _right(math_ops.logical_or) 46 ragged_tensor.RaggedTensor.__or__ = math_ops.logical_or [all …]
|
D | ragged_from_tensor_op_test.py | 28 from tensorflow.python.ops.ragged.ragged_tensor import RaggedTensor 40 RaggedTensor.from_tensor(dt), [[5, 7, 0], [0, 3, 0], [6, 0, 0]]) 43 RaggedTensor.from_tensor(dt, lengths=[1, 0, 3]), [[5], [], [6, 0, 0]]) 46 RaggedTensor.from_tensor(dt, padding=0), [[5, 7], [0, 3], [6]]) 52 RaggedTensor.from_tensor(dt_3d, lengths=([2, 0, 3], [1, 1, 2, 0, 1])), 315 rt = RaggedTensor.from_tensor(dt, lengths, padding, ragged_rank) 317 rt = RaggedTensor.from_tensor(dt, lengths, padding) 318 self.assertEqual(type(rt), RaggedTensor) 331 rt = RaggedTensor.from_tensor(dt, ragged_rank=ragged_rank) 332 self.assertEqual(type(rt), RaggedTensor) [all …]
|
D | ragged_from_sparse_op_test.py | 28 from tensorflow.python.ops.ragged.ragged_tensor import RaggedTensor 40 rt = RaggedTensor.from_sparse(st) 49 rt = RaggedTensor.from_sparse(st) 56 RaggedTensor.from_sparse, st1) 61 RaggedTensor.from_sparse, st2) 69 RaggedTensor.from_sparse, st3) 83 RaggedTensor.from_sparse(st1) 84 RaggedTensor.from_sparse(st2) 97 self.evaluate(RaggedTensor.from_sparse(st1)) 103 self.evaluate(RaggedTensor.from_sparse(st2)) [all …]
|
D | ragged_tensor_test.py | 37 from tensorflow.python.ops.ragged.ragged_tensor import RaggedTensor 126 rt = RaggedTensor.from_row_splits( 133 rt1 = RaggedTensor.from_row_splits(values, row_splits=[0, 4, 4, 7, 8, 8]) 134 rt2 = RaggedTensor.from_row_lengths(values, row_lengths=[4, 0, 3, 1, 0]) 135 rt3 = RaggedTensor.from_value_rowids( 137 rt4 = RaggedTensor.from_row_starts(values, row_starts=[0, 4, 4, 7, 8]) 138 rt5 = RaggedTensor.from_row_limits(values, row_limits=[4, 4, 7, 8, 8]) 144 inner_rt = RaggedTensor.from_row_splits( 146 outer_rt = RaggedTensor.from_row_splits( 155 rt = RaggedTensor.from_nested_row_splits( [all …]
|
D | ragged_tensor_bounding_shape_op_test.py | 39 rt1 = ragged_tensor.RaggedTensor.from_row_splits(values, [0, 2, 5, 6, 6, 7]) 40 rt2 = ragged_tensor.RaggedTensor.from_row_splits(values, [0, 7]) 41 rt3 = ragged_tensor.RaggedTensor.from_row_splits(values, [0, 0, 7, 7]) 48 rt1 = ragged_tensor.RaggedTensor.from_row_splits(values, [0, 2, 5, 6, 6, 7]) 49 rt2 = ragged_tensor.RaggedTensor.from_row_splits(values, [0, 7]) 50 rt3 = ragged_tensor.RaggedTensor.from_row_splits(values, [0, 0, 7, 7]) 56 rt = ragged_tensor.RaggedTensor.from_row_splits(b'a b c d e f g'.split(),
|
D | ragged_to_sparse_op_test.py | 147 bad_rt1 = ragged_tensor.RaggedTensor.from_row_splits( 153 bad_rt2 = ragged_tensor.RaggedTensor.from_row_splits( 155 bad_rt3 = ragged_tensor.RaggedTensor.from_row_splits( 157 values=ragged_tensor.RaggedTensor.from_row_splits( 165 bad_rt4 = ragged_tensor.RaggedTensor.from_row_splits( 167 values=ragged_tensor.RaggedTensor.from_row_splits( 174 bad_rt5 = ragged_tensor.RaggedTensor.from_row_splits(
|
D | ragged_where_op.py | 116 condition_is_ragged = isinstance(condition, ragged_tensor.RaggedTensor) 117 x_is_ragged = isinstance(x, ragged_tensor.RaggedTensor) 118 y_is_ragged = isinstance(y, ragged_tensor.RaggedTensor) 141 if not isinstance(condition, ragged_tensor.RaggedTensor): 162 if isinstance(rt_input, ragged_tensor.RaggedTensor):
|
D | ragged_map_ops.py | 224 if isinstance(elems_flat[0], ragged_tensor.RaggedTensor): 370 if not isinstance(rt, ragged_tensor.RaggedTensor): 399 values = ragged_tensor.RaggedTensor.from_row_lengths( 401 return ragged_tensor.RaggedTensor.from_row_lengths(values, t.outer_row_length) 421 if isinstance(current, ragged_tensor.RaggedTensor): 437 if isinstance(current, ragged_tensor.RaggedTensor):
|
D | ragged_array_ops.py | 166 masked_values = ragged_tensor.RaggedTensor.from_nested_row_splits( 189 return ragged_tensor.RaggedTensor.from_row_splits(masked_values, 211 masked_values = ragged_tensor.RaggedTensor.from_row_lengths( 221 masked_values = ragged_tensor.RaggedTensor.from_row_splits( 267 return ragged_tensor.RaggedTensor.from_nested_row_splits( 484 return ragged_tensor.RaggedTensor.from_row_splits(values, splits) 544 if isinstance(rt_input, ragged_tensor.RaggedTensor):
|
D | ragged_dispatch_test.py | 145 if isinstance(x, ragged_tensor.RaggedTensor): 146 self.assertIsInstance(y, ragged_tensor.RaggedTensor) 238 dense_x = x.flat_values if isinstance(x, ragged_tensor.RaggedTensor) else x 245 if isinstance(result, ragged_tensor.RaggedTensor): 360 dense_x = x.flat_values if isinstance(x, ragged_tensor.RaggedTensor) else x 361 dense_y = y.flat_values if isinstance(y, ragged_tensor.RaggedTensor) else y 369 if isinstance(result, ragged_tensor.RaggedTensor): 425 x.flat_values if isinstance(x, ragged_tensor.RaggedTensor) else x 435 if isinstance(result, ragged_tensor.RaggedTensor): 445 y = ragged_tensor.RaggedTensor.from_row_splits(
|
D | ragged_tensor.py | 49 class RaggedTensor(composite_tensor.CompositeTensor): class 243 if not isinstance(values, (RaggedTensor, ops.Tensor)): 663 values_is_ragged = isinstance(self._values, RaggedTensor) 739 while isinstance(rt_values, RaggedTensor): 771 while isinstance(rt_values, RaggedTensor): 917 elif isinstance(self.values, RaggedTensor): 940 while isinstance(rt, RaggedTensor): 1012 return RaggedTensor( 1435 while isinstance(rt, RaggedTensor): 1463 while isinstance(values, RaggedTensor): [all …]
|
D | ragged_concat_ops.py | 186 return ragged_tensor.RaggedTensor.from_row_splits( 222 return ragged_tensor.RaggedTensor.from_nested_row_splits( 266 return ragged_tensor.RaggedTensor.from_row_splits(permuted_rt, 273 return ragged_tensor.RaggedTensor.from_row_splits(permuted_rt.values,
|
D | ragged_math_ops.py | 103 return ragged_tensor.RaggedTensor.from_row_splits(result.rt_dense_values, 241 return ragged_tensor.RaggedTensor.from_row_splits(output_values, 278 ones = ragged_tensor.RaggedTensor.from_nested_row_splits( 292 ones = ragged_tensor.RaggedTensor.from_nested_row_splits( 534 ones = ragged_tensor.RaggedTensor.from_nested_row_splits( 541 return ragged_tensor.RaggedTensor.from_nested_row_splits(
|
D | ragged_conversion_ops.py | 28 return ragged_tensor.RaggedTensor.from_tensor(tensor, lengths, padding, 44 return ragged_tensor.RaggedTensor.from_sparse(st_input, name)
|
D | ragged_getitem.py | 140 return ragged_tensor.RaggedTensor.from_row_splits( 208 return ragged_tensor.RaggedTensor.from_row_splits( 249 return ragged_tensor.RaggedTensor.from_row_splits(inner_rt, 368 if isinstance(values, ragged_tensor.RaggedTensor):
|
D | ragged_string_ops.py | 117 ragged_input_tensor = ragged_tensor.RaggedTensor.from_row_splits( 388 codepoints = ragged_tensor.RaggedTensor.from_row_splits( 393 offsets = ragged_tensor.RaggedTensor.from_row_splits(
|
D | ragged_batch_gather_ops.py | 90 return ragged_tensor.RaggedTensor.from_row_splits( 109 return ragged_tensor.RaggedTensor.from_row_splits(
|
D | ragged_map_fn_op_test.py | 88 fn=lambda x: ragged_tensor.RaggedTensor.from_row_starts(x, [0]), 274 fn = lambda x: ragged_tensor.RaggedTensor.from_row_starts(x, [0]) 289 t2 = ragged_tensor.RaggedTensor.from_sparse(s)
|
D | ragged_tensor_shape.py | 472 if isinstance(rt_input, ragged_tensor.RaggedTensor): 487 if (isinstance(rt_input, ragged_tensor.RaggedTensor) and 504 rt_input = ragged_tensor.RaggedTensor.from_row_lengths(rt_input, [nrows]) 571 return ragged_tensor.RaggedTensor.from_nested_row_lengths(
|
D | ragged_map_flat_values_op_test.py | 199 x = ragged_tensor.RaggedTensor.from_row_splits([3, 1, 4, 1, 5], splits1) 200 y = ragged_tensor.RaggedTensor.from_row_splits([1, 2, 3, 4, 5], splits2)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_RaggedGather.pbtxt | 8 `params` RaggedTensor input. 14 The `flat_values` for the `params` RaggedTensor. There was a terminology change 30 returned RaggedTensor. 35 description: "The `flat_values` for the returned RaggedTensor." 40 The ragged rank of the `params` RaggedTensor. `params_nested_splits` should 48 The ragged rank of the output RaggedTensor. `output_nested_splits` will contain 57 Outputs a `RaggedTensor` output composed from `output_dense_values` and
|
D | api_def_RaggedTensorToSparse.pbtxt | 6 description: "The `row_splits` for the `RaggedTensor`." 10 description: "The `flat_values` for the `RaggedTensor`." 23 `sparse_dense_shape` is a tight bounding box of the input `RaggedTensor`. 29 The ragged rank of the input RaggedTensor. `rt_nested_splits` should contain 35 Converts a `RaggedTensor` into a `SparseTensor` with the same values.
|
D | api_def_RaggedRange.pbtxt | 18 description: "The `row_splits` for the returned `RaggedTensor`." 22 description: "The `flat_values` for the returned `RaggedTensor`." 25 Returns a `RaggedTensor` containing the specified sequences of numbers. 29 Returns a `RaggedTensor` `result` composed from `rt_dense_values` and
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | composite_tensor_support_test.py | 47 if isinstance(inputs, ragged_tensor.RaggedTensor): 67 return ragged_tensor.RaggedTensor.from_tensor(
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.-ragged-tensor.pbtxt | 1 path: "tensorflow.RaggedTensor" 3 is_instance: "<class \'tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor\'>"
|