/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | math.cc | 135 XlaOp Reciprocal(XlaOp operand) { return ScalarLike(operand, 1.0) / operand; } in Reciprocal() 140 XlaOp poly = ScalarLike(x, 0.0); in EvaluatePolynomial() 142 poly = poly * x + ScalarLike(x, c); in EvaluatePolynomial() 177 XlaOp q = ScalarLike(x, 1) / abs_x; in ErfcImpl() 179 XlaOp p = Select(Lt(abs_x, ScalarLike(x, 2.0)), in ErfcImpl() 183 return Select(Lt(x, ScalarLike(x, 0)), ScalarLike(x, 2.0) - y, y); in ErfcImpl() 217 return Select(Gt(Abs(x), ScalarLike(x, 1)), ErfcImpl(x), in Erfc() 218 ScalarLike(x, 1) - ErfImpl(x)); in Erfc() 234 return Select(Lt(Abs(x), ScalarLike(x, 1)), ErfImpl(x), in Erf() 235 ScalarLike(x, 1) - ErfcImpl(x)); in Erf() [all …]
|
D | svd.cc | 120 XlaOp zero = ScalarLike(i, 0); in HouseRow() 135 auto one = ScalarLike(v, 1.0); in HouseRow() 138 Sqrt(Reduce(Square(v), ScalarLike(v, 0.0), in HouseRow() 149 Le(x_0j, ScalarLike(x_0j, 0.0)), Sub(x_0j, mu), in HouseRow() 152 auto beta = Div(ScalarLike(v_0j, 2.0), in HouseRow() 186 XlaOp zero = ScalarLike(i, 0); in HouseCol() 201 auto one = ScalarLike(v, 1.0); in HouseCol() 204 Sqrt(Reduce(Square(v), ScalarLike(v, 0.0), in HouseCol() 216 Le(x_0i, ScalarLike(x_0i, 0.0)), Sub(x_0i, mu), in HouseCol() 219 auto beta = Div(ScalarLike(v_0i, 2.0), in HouseCol() [all …]
|
D | self_adjoint_eig.cc | 82 auto zero = ScalarLike(a, 0.0); in SymmetricShurDecomposition2x2() 83 auto one = ScalarLike(a, 1.0); in SymmetricShurDecomposition2x2() 84 auto two = ScalarLike(a, 2.0); in SymmetricShurDecomposition2x2() 124 auto zero = ScalarLike(p, 0); in Update() 155 auto pq_zero = ScalarLike(jacobi_update.w, 0.0); in Update() 200 Sqrt(Reduce(Square(w), ScalarLike(w, 0.0), in ComputeFrobeniusNorms() 205 Reduce(Square(diag), ScalarLike(w, 0.0), in ComputeFrobeniusNorms() 212 Sqrt(Max(Square(frobenius_norm) - diag_square, ScalarLike(w, 0.0))); in ComputeFrobeniusNorms() 228 auto max_sweeps = ScalarLike(k, max_sweep_updates); in WhileLoopFn() 247 return Lt(p, ScalarLike(p, matrix_dimension - 1)); in WhileLoopFn() [all …]
|
D | constants.h | 85 XlaOp ScalarLike(XlaOp prototype, T value) { in ScalarLike() function 104 return Broadcast(ScalarLike(prototype, value), shape.dimensions()); in FullLike()
|
D | constants_test.cc | 55 ScalarLike(ConstantR0<int32>(&builder, 42), -3); in XLA_TEST_F() 61 ScalarLike(ConstantR0<float>(&builder, 42.75), -3.2); in XLA_TEST_F()
|
D | matrix.cc | 75 return Reduce(Select(mask, x, Zeros(builder, shape)), ScalarLike(x, 0), in GetMatrixDiagonal() 79 ScalarLike(x, 0), reducer, {n_dims - 2}); in GetMatrixDiagonal() 84 ScalarLike(x, 0), reducer, {n_dims - 1}); in GetMatrixDiagonal()
|
D | math_test.cc | 133 &b, {Sqrt(x), Pow(x, ScalarLike(x, 0.5)), Pow(x, ScalarLike(x, 0.3))}, in TestSqrtPowInequivalence()
|
D | qr.cc | 85 XlaOp zero = ScalarLike(x, 0.0); in House() 86 XlaOp one = ScalarLike(x, 1.0); in House()
|
/external/tensorflow/tensorflow/compiler/tf2xla/lib/ |
D | random.cc | 44 xla::XlaOp one = xla::ScalarLike(uniform, 1.0); in TruncatedNormal() 45 xla::XlaOp two = xla::ScalarLike(uniform, 2.0); in TruncatedNormal() 46 xla::XlaOp sqrt_2 = xla::ScalarLike(uniform, std::sqrt(2.0)); in TruncatedNormal() 47 xla::XlaOp z = xla::ScalarLike(uniform, kZ); in TruncatedNormal() 48 xla::XlaOp alpha_normal_cdf = xla::ScalarLike(uniform, kAlphaNormalCdf); in TruncatedNormal()
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | unary_ops.cc | 71 XLAJIT_MAKE_UNARY(Inv, xla::ScalarLike(x, 1.0) / x); 72 XLAJIT_MAKE_UNARY(Reciprocal, xla::ScalarLike(x, 1.0) / x); 87 auto half = xla::ScalarLike(x, 0.5); in Sigmoid() 105 XLAJIT_MAKE_UNARY(Softplus, xla::Max(x, xla::ScalarLike(x, 0.0)) + 109 XLAJIT_MAKE_UNARY(Softsign, x / (xla::Abs(x) + xla::ScalarLike(x, 1.0)));
|
D | relu_op.cc | 61 xla::Max(features, features * xla::ScalarLike(features, alpha_)); in Compile() 113 xla::Select(xla::Gt(features, xla::ScalarLike(features, 0)), gradients, in Compile() 114 gradients * xla::ScalarLike(gradients, alpha_)); in Compile()
|
D | batch_norm_op.cc | 85 variance, xla::ScalarLike(variance, epsilon_)))); in Compile() 160 xla::XlaOp one = xla::ScalarLike(var, 1.0f); in Compile() 161 xla::XlaOp epsilon = xla::ScalarLike(var, epsilon_); in Compile()
|
D | training_ops.cc | 62 xla::XlaOp one = xla::ScalarLike(lr, 1.0); in ProximalGradientDescentUpdate() 63 xla::XlaOp zero = xla::ScalarLike(lr, 0.0); in ProximalGradientDescentUpdate() 386 xla::XlaOp zero = xla::ScalarLike(lr, 0.0); in Compile() 545 xla::XlaOp one = xla::ScalarLike(lr, 1.0); in Compile() 634 xla::XlaOp one = xla::ScalarLike(ms, 1.0); in Compile() 904 m = m * beta + grad * (xla::ScalarLike(beta, 1.0) - beta); in Compile()
|
D | reverse_sequence_op.cc | 75 xla::XlaOp back = xla::Sub(seq_lens, xla::ScalarLike(seq_lens, 1)); in Compile()
|
D | stateless_random_ops.cc | 51 return xla::ScalarLike(uniform, std::sqrt(2.0)) * xla::ErfInv(uniform); in Uniform2NormalUsingSqrtErfinv()
|
D | stateful_random_ops.cc | 271 xla::ScalarLike(uniform, std::sqrt(2.0)) * xla::ErfInv(uniform); in Compile()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | triangular_solve_expander.cc | 215 auto j = (lower) ? i : ScalarLike(i, block_size - 1) - i; in InvertDiagonalBlocks() 233 auto next_i = i + ScalarLike(i, 1); in InvertDiagonalBlocks()
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | exhaustive_op_test.cc | 539 Run([](XlaOp x) { return Pow(x, ScalarLike(x, 0.5)); }, in XLA_TEST_P()
|