• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the target machine instruction set to the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/CodeGen/LiveRegUnits.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineCombinerPattern.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineOutliner.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
38 
39 namespace llvm {
40 
41 class DFAPacketizer;
42 class InstrItineraryData;
43 class LiveIntervals;
44 class LiveVariables;
45 class MachineMemOperand;
46 class MachineRegisterInfo;
47 class MCAsmInfo;
48 class MCInst;
49 struct MCSchedModel;
50 class Module;
51 class ScheduleDAG;
52 class ScheduleHazardRecognizer;
53 class SDNode;
54 class SelectionDAG;
55 class RegScavenger;
56 class TargetRegisterClass;
57 class TargetRegisterInfo;
58 class TargetSchedModel;
59 class TargetSubtargetInfo;
60 
61 template <class T> class SmallVectorImpl;
62 
63 //---------------------------------------------------------------------------
64 ///
65 /// TargetInstrInfo - Interface to description of machine instruction set
66 ///
67 class TargetInstrInfo : public MCInstrInfo {
68 public:
69   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
70                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
CallFrameSetupOpcode(CFSetupOpcode)71       : CallFrameSetupOpcode(CFSetupOpcode),
72         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
73         ReturnOpcode(ReturnOpcode) {}
74   TargetInstrInfo(const TargetInstrInfo &) = delete;
75   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
76   virtual ~TargetInstrInfo();
77 
isGenericOpcode(unsigned Opc)78   static bool isGenericOpcode(unsigned Opc) {
79     return Opc <= TargetOpcode::GENERIC_OP_END;
80   }
81 
82   /// Given a machine instruction descriptor, returns the register
83   /// class constraint for OpNum, or NULL.
84   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
85                                          const TargetRegisterInfo *TRI,
86                                          const MachineFunction &MF) const;
87 
88   /// Return true if the instruction is trivially rematerializable, meaning it
89   /// has no side effects and requires no operands that aren't always available.
90   /// This means the only allowed uses are constants and unallocatable physical
91   /// registers so that the instructions result is independent of the place
92   /// in the function.
93   bool isTriviallyReMaterializable(const MachineInstr &MI,
94                                    AliasAnalysis *AA = nullptr) const {
95     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
96            (MI.getDesc().isRematerializable() &&
97             (isReallyTriviallyReMaterializable(MI, AA) ||
98              isReallyTriviallyReMaterializableGeneric(MI, AA)));
99   }
100 
101 protected:
102   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
103   /// set, this hook lets the target specify whether the instruction is actually
104   /// trivially rematerializable, taking into consideration its operands. This
105   /// predicate must return false if the instruction has any side effects other
106   /// than producing a value, or if it requres any address registers that are
107   /// not always available.
108   /// Requirements must be check as stated in isTriviallyReMaterializable() .
isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA)109   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
110                                                  AliasAnalysis *AA) const {
111     return false;
112   }
113 
114   /// This method commutes the operands of the given machine instruction MI.
115   /// The operands to be commuted are specified by their indices OpIdx1 and
116   /// OpIdx2.
117   ///
118   /// If a target has any instructions that are commutable but require
119   /// converting to different instructions or making non-trivial changes
120   /// to commute them, this method can be overloaded to do that.
121   /// The default implementation simply swaps the commutable operands.
122   ///
123   /// If NewMI is false, MI is modified in place and returned; otherwise, a
124   /// new machine instruction is created and returned.
125   ///
126   /// Do not call this method for a non-commutable instruction.
127   /// Even though the instruction is commutable, the method may still
128   /// fail to commute the operands, null pointer is returned in such cases.
129   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
130                                                unsigned OpIdx1,
131                                                unsigned OpIdx2) const;
132 
133   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
134   /// operand indices to (ResultIdx1, ResultIdx2).
135   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
136   /// predefined to some indices or be undefined (designated by the special
137   /// value 'CommuteAnyOperandIndex').
138   /// The predefined result indices cannot be re-defined.
139   /// The function returns true iff after the result pair redefinition
140   /// the fixed result pair is equal to or equivalent to the source pair of
141   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
142   /// the pairs (x,y) and (y,x) are equivalent.
143   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
144                                    unsigned CommutableOpIdx1,
145                                    unsigned CommutableOpIdx2);
146 
147 private:
148   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
149   /// set and the target hook isReallyTriviallyReMaterializable returns false,
150   /// this function does target-independent tests to determine if the
151   /// instruction is really trivially rematerializable.
152   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
153                                                 AliasAnalysis *AA) const;
154 
155 public:
156   /// These methods return the opcode of the frame setup/destroy instructions
157   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
158   /// order to abstract away the difference between operating with a frame
159   /// pointer and operating without, through the use of these two instructions.
160   ///
getCallFrameSetupOpcode()161   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
getCallFrameDestroyOpcode()162   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
163 
164   /// Returns true if the argument is a frame pseudo instruction.
isFrameInstr(const MachineInstr & I)165   bool isFrameInstr(const MachineInstr &I) const {
166     return I.getOpcode() == getCallFrameSetupOpcode() ||
167            I.getOpcode() == getCallFrameDestroyOpcode();
168   }
169 
170   /// Returns true if the argument is a frame setup pseudo instruction.
isFrameSetup(const MachineInstr & I)171   bool isFrameSetup(const MachineInstr &I) const {
172     return I.getOpcode() == getCallFrameSetupOpcode();
173   }
174 
175   /// Returns size of the frame associated with the given frame instruction.
176   /// For frame setup instruction this is frame that is set up space set up
177   /// after the instruction. For frame destroy instruction this is the frame
178   /// freed by the caller.
179   /// Note, in some cases a call frame (or a part of it) may be prepared prior
180   /// to the frame setup instruction. It occurs in the calls that involve
181   /// inalloca arguments. This function reports only the size of the frame part
182   /// that is set up between the frame setup and destroy pseudo instructions.
getFrameSize(const MachineInstr & I)183   int64_t getFrameSize(const MachineInstr &I) const {
184     assert(isFrameInstr(I) && "Not a frame instruction");
185     assert(I.getOperand(0).getImm() >= 0);
186     return I.getOperand(0).getImm();
187   }
188 
189   /// Returns the total frame size, which is made up of the space set up inside
190   /// the pair of frame start-stop instructions and the space that is set up
191   /// prior to the pair.
getFrameTotalSize(const MachineInstr & I)192   int64_t getFrameTotalSize(const MachineInstr &I) const {
193     if (isFrameSetup(I)) {
194       assert(I.getOperand(1).getImm() >= 0 &&
195              "Frame size must not be negative");
196       return getFrameSize(I) + I.getOperand(1).getImm();
197     }
198     return getFrameSize(I);
199   }
200 
getCatchReturnOpcode()201   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
getReturnOpcode()202   unsigned getReturnOpcode() const { return ReturnOpcode; }
203 
204   /// Returns the actual stack pointer adjustment made by an instruction
205   /// as part of a call sequence. By default, only call frame setup/destroy
206   /// instructions adjust the stack, but targets may want to override this
207   /// to enable more fine-grained adjustment, or adjust by a different value.
208   virtual int getSPAdjust(const MachineInstr &MI) const;
209 
210   /// Return true if the instruction is a "coalescable" extension instruction.
211   /// That is, it's like a copy where it's legal for the source to overlap the
212   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
213   /// expected the pre-extension value is available as a subreg of the result
214   /// register. This also returns the sub-register index in SubIdx.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)215   virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
216                                      unsigned &DstReg, unsigned &SubIdx) const {
217     return false;
218   }
219 
220   /// If the specified machine instruction is a direct
221   /// load from a stack slot, return the virtual or physical register number of
222   /// the destination along with the FrameIndex of the loaded stack slot.  If
223   /// not, return 0.  This predicate must return 0 if the instruction has
224   /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)225   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
226                                        int &FrameIndex) const {
227     return 0;
228   }
229 
230   /// Optional extension of isLoadFromStackSlot that returns the number of
231   /// bytes loaded from the stack. This must be implemented if a backend
232   /// supports partial stack slot spills/loads to further disambiguate
233   /// what the load does.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)234   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
235                                        int &FrameIndex,
236                                        unsigned &MemBytes) const {
237     MemBytes = 0;
238     return isLoadFromStackSlot(MI, FrameIndex);
239   }
240 
241   /// Check for post-frame ptr elimination stack locations as well.
242   /// This uses a heuristic so it isn't reliable for correctness.
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)243   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
244                                              int &FrameIndex) const {
245     return 0;
246   }
247 
248   /// If the specified machine instruction has a load from a stack slot,
249   /// return true along with the FrameIndex of the loaded stack slot and the
250   /// machine mem operand containing the reference.
251   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
252   /// any instructions that loads from the stack.  This is just a hint, as some
253   /// cases may be missed.
254   virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
255                                     const MachineMemOperand *&MMO,
256                                     int &FrameIndex) const;
257 
258   /// If the specified machine instruction is a direct
259   /// store to a stack slot, return the virtual or physical register number of
260   /// the source reg along with the FrameIndex of the loaded stack slot.  If
261   /// not, return 0.  This predicate must return 0 if the instruction has
262   /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)263   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
264                                       int &FrameIndex) const {
265     return 0;
266   }
267 
268   /// Optional extension of isStoreToStackSlot that returns the number of
269   /// bytes stored to the stack. This must be implemented if a backend
270   /// supports partial stack slot spills/loads to further disambiguate
271   /// what the store does.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)272   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
273                                       int &FrameIndex,
274                                       unsigned &MemBytes) const {
275     MemBytes = 0;
276     return isStoreToStackSlot(MI, FrameIndex);
277   }
278 
279   /// Check for post-frame ptr elimination stack locations as well.
280   /// This uses a heuristic, so it isn't reliable for correctness.
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)281   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
282                                             int &FrameIndex) const {
283     return 0;
284   }
285 
286   /// If the specified machine instruction has a store to a stack slot,
287   /// return true along with the FrameIndex of the loaded stack slot and the
288   /// machine mem operand containing the reference.
289   /// If not, return false.  Unlike isStoreToStackSlot,
290   /// this returns true for any instructions that stores to the
291   /// stack.  This is just a hint, as some cases may be missed.
292   virtual bool hasStoreToStackSlot(const MachineInstr &MI,
293                                    const MachineMemOperand *&MMO,
294                                    int &FrameIndex) const;
295 
296   /// Return true if the specified machine instruction
297   /// is a copy of one stack slot to another and has no other effect.
298   /// Provide the identity of the two frame indices.
isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)299   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
300                                int &SrcFrameIndex) const {
301     return false;
302   }
303 
304   /// Compute the size in bytes and offset within a stack slot of a spilled
305   /// register or subregister.
306   ///
307   /// \param [out] Size in bytes of the spilled value.
308   /// \param [out] Offset in bytes within the stack slot.
309   /// \returns true if both Size and Offset are successfully computed.
310   ///
311   /// Not all subregisters have computable spill slots. For example,
312   /// subregisters registers may not be byte-sized, and a pair of discontiguous
313   /// subregisters has no single offset.
314   ///
315   /// Targets with nontrivial bigendian implementations may need to override
316   /// this, particularly to support spilled vector registers.
317   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
318                                  unsigned &Size, unsigned &Offset,
319                                  const MachineFunction &MF) const;
320 
321   /// Returns the size in bytes of the specified MachineInstr, or ~0U
322   /// when this function is not implemented by a target.
getInstSizeInBytes(const MachineInstr & MI)323   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
324     return ~0U;
325   }
326 
327   /// Return true if the instruction is as cheap as a move instruction.
328   ///
329   /// Targets for different archs need to override this, and different
330   /// micro-architectures can also be finely tuned inside.
isAsCheapAsAMove(const MachineInstr & MI)331   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
332     return MI.isAsCheapAsAMove();
333   }
334 
335   /// Return true if the instruction should be sunk by MachineSink.
336   ///
337   /// MachineSink determines on its own whether the instruction is safe to sink;
338   /// this gives the target a hook to override the default behavior with regards
339   /// to which instructions should be sunk.
shouldSink(const MachineInstr & MI)340   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
341 
342   /// Re-issue the specified 'original' instruction at the
343   /// specific location targeting a new destination register.
344   /// The register in Orig->getOperand(0).getReg() will be substituted by
345   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
346   /// SubIdx.
347   virtual void reMaterialize(MachineBasicBlock &MBB,
348                              MachineBasicBlock::iterator MI, unsigned DestReg,
349                              unsigned SubIdx, const MachineInstr &Orig,
350                              const TargetRegisterInfo &TRI) const;
351 
352   /// Clones instruction or the whole instruction bundle \p Orig and
353   /// insert into \p MBB before \p InsertBefore. The target may update operands
354   /// that are required to be unique.
355   ///
356   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
357   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
358                                   MachineBasicBlock::iterator InsertBefore,
359                                   const MachineInstr &Orig) const;
360 
361   /// This method must be implemented by targets that
362   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
363   /// may be able to convert a two-address instruction into one or more true
364   /// three-address instructions on demand.  This allows the X86 target (for
365   /// example) to convert ADD and SHL instructions into LEA instructions if they
366   /// would require register copies due to two-addressness.
367   ///
368   /// This method returns a null pointer if the transformation cannot be
369   /// performed, otherwise it returns the last new instruction.
370   ///
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV)371   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
372                                               MachineInstr &MI,
373                                               LiveVariables *LV) const {
374     return nullptr;
375   }
376 
377   // This constant can be used as an input value of operand index passed to
378   // the method findCommutedOpIndices() to tell the method that the
379   // corresponding operand index is not pre-defined and that the method
380   // can pick any commutable operand.
381   static const unsigned CommuteAnyOperandIndex = ~0U;
382 
383   /// This method commutes the operands of the given machine instruction MI.
384   ///
385   /// The operands to be commuted are specified by their indices OpIdx1 and
386   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
387   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
388   /// any arbitrarily chosen commutable operand. If both arguments are set to
389   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
390   /// operands; then commutes them if such operands could be found.
391   ///
392   /// If NewMI is false, MI is modified in place and returned; otherwise, a
393   /// new machine instruction is created and returned.
394   ///
395   /// Do not call this method for a non-commutable instruction or
396   /// for non-commuable operands.
397   /// Even though the instruction is commutable, the method may still
398   /// fail to commute the operands, null pointer is returned in such cases.
399   MachineInstr *
400   commuteInstruction(MachineInstr &MI, bool NewMI = false,
401                      unsigned OpIdx1 = CommuteAnyOperandIndex,
402                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
403 
404   /// Returns true iff the routine could find two commutable operands in the
405   /// given machine instruction.
406   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
407   /// If any of the INPUT values is set to the special value
408   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
409   /// operand, then returns its index in the corresponding argument.
410   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
411   /// looks for 2 commutable operands.
412   /// If INPUT values refer to some operands of MI, then the method simply
413   /// returns true if the corresponding operands are commutable and returns
414   /// false otherwise.
415   ///
416   /// For example, calling this method this way:
417   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
418   ///     findCommutedOpIndices(MI, Op1, Op2);
419   /// can be interpreted as a query asking to find an operand that would be
420   /// commutable with the operand#1.
421   virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
422                                      unsigned &SrcOpIdx2) const;
423 
424   /// A pair composed of a register and a sub-register index.
425   /// Used to give some type checking when modeling Reg:SubReg.
426   struct RegSubRegPair {
427     unsigned Reg;
428     unsigned SubReg;
429 
430     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
RegRegSubRegPair431         : Reg(Reg), SubReg(SubReg) {}
432   };
433 
434   /// A pair composed of a pair of a register and a sub-register index,
435   /// and another sub-register index.
436   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
437   struct RegSubRegPairAndIdx : RegSubRegPair {
438     unsigned SubIdx;
439 
440     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
441                         unsigned SubIdx = 0)
RegSubRegPairRegSubRegPairAndIdx442         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
443   };
444 
445   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
446   /// and \p DefIdx.
447   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
448   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
449   /// flag are not added to this list.
450   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
451   /// two elements:
452   /// - %1:sub1, sub0
453   /// - %2<:0>, sub1
454   ///
455   /// \returns true if it is possible to build such an input sequence
456   /// with the pair \p MI, \p DefIdx. False otherwise.
457   ///
458   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
459   ///
460   /// \note The generic implementation does not provide any support for
461   /// MI.isRegSequenceLike(). In other words, one has to override
462   /// getRegSequenceLikeInputs for target specific instructions.
463   bool
464   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
465                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
466 
467   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
468   /// and \p DefIdx.
469   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
470   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
471   /// - %1:sub1, sub0
472   ///
473   /// \returns true if it is possible to build such an input sequence
474   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
475   /// False otherwise.
476   ///
477   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
478   ///
479   /// \note The generic implementation does not provide any support for
480   /// MI.isExtractSubregLike(). In other words, one has to override
481   /// getExtractSubregLikeInputs for target specific instructions.
482   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
483                               RegSubRegPairAndIdx &InputReg) const;
484 
485   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
486   /// and \p DefIdx.
487   /// \p [out] BaseReg and \p [out] InsertedReg contain
488   /// the equivalent inputs of INSERT_SUBREG.
489   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
490   /// - BaseReg: %0:sub0
491   /// - InsertedReg: %1:sub1, sub3
492   ///
493   /// \returns true if it is possible to build such an input sequence
494   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
495   /// False otherwise.
496   ///
497   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
498   ///
499   /// \note The generic implementation does not provide any support for
500   /// MI.isInsertSubregLike(). In other words, one has to override
501   /// getInsertSubregLikeInputs for target specific instructions.
502   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
503                              RegSubRegPair &BaseReg,
504                              RegSubRegPairAndIdx &InsertedReg) const;
505 
506   /// Return true if two machine instructions would produce identical values.
507   /// By default, this is only true when the two instructions
508   /// are deemed identical except for defs. If this function is called when the
509   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
510   /// aggressive checks.
511   virtual bool produceSameValue(const MachineInstr &MI0,
512                                 const MachineInstr &MI1,
513                                 const MachineRegisterInfo *MRI = nullptr) const;
514 
515   /// \returns true if a branch from an instruction with opcode \p BranchOpc
516   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
isBranchOffsetInRange(unsigned BranchOpc,int64_t BrOffset)517   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
518                                      int64_t BrOffset) const {
519     llvm_unreachable("target did not implement");
520   }
521 
522   /// \returns The block that branch instruction \p MI jumps to.
getBranchDestBlock(const MachineInstr & MI)523   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
524     llvm_unreachable("target did not implement");
525   }
526 
527   /// Insert an unconditional indirect branch at the end of \p MBB to \p
528   /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
529   /// the offset of the position to insert the new branch.
530   ///
531   /// \returns The number of bytes added to the block.
532   virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
533                                         MachineBasicBlock &NewDestBB,
534                                         const DebugLoc &DL,
535                                         int64_t BrOffset = 0,
536                                         RegScavenger *RS = nullptr) const {
537     llvm_unreachable("target did not implement");
538   }
539 
540   /// Analyze the branching code at the end of MBB, returning
541   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
542   /// implemented for a target).  Upon success, this returns false and returns
543   /// with the following information in various cases:
544   ///
545   /// 1. If this block ends with no branches (it just falls through to its succ)
546   ///    just return false, leaving TBB/FBB null.
547   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
548   ///    the destination block.
549   /// 3. If this block ends with a conditional branch and it falls through to a
550   ///    successor block, it sets TBB to be the branch destination block and a
551   ///    list of operands that evaluate the condition. These operands can be
552   ///    passed to other TargetInstrInfo methods to create new branches.
553   /// 4. If this block ends with a conditional branch followed by an
554   ///    unconditional branch, it returns the 'true' destination in TBB, the
555   ///    'false' destination in FBB, and a list of operands that evaluate the
556   ///    condition.  These operands can be passed to other TargetInstrInfo
557   ///    methods to create new branches.
558   ///
559   /// Note that removeBranch and insertBranch must be implemented to support
560   /// cases where this method returns success.
561   ///
562   /// If AllowModify is true, then this routine is allowed to modify the basic
563   /// block (e.g. delete instructions after the unconditional branch).
564   ///
565   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
566   /// before calling this function.
567   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
568                              MachineBasicBlock *&FBB,
569                              SmallVectorImpl<MachineOperand> &Cond,
570                              bool AllowModify = false) const {
571     return true;
572   }
573 
574   /// Represents a predicate at the MachineFunction level.  The control flow a
575   /// MachineBranchPredicate represents is:
576   ///
577   ///  Reg = LHS `Predicate` RHS         == ConditionDef
578   ///  if Reg then goto TrueDest else goto FalseDest
579   ///
580   struct MachineBranchPredicate {
581     enum ComparePredicate {
582       PRED_EQ,     // True if two values are equal
583       PRED_NE,     // True if two values are not equal
584       PRED_INVALID // Sentinel value
585     };
586 
587     ComparePredicate Predicate = PRED_INVALID;
588     MachineOperand LHS = MachineOperand::CreateImm(0);
589     MachineOperand RHS = MachineOperand::CreateImm(0);
590     MachineBasicBlock *TrueDest = nullptr;
591     MachineBasicBlock *FalseDest = nullptr;
592     MachineInstr *ConditionDef = nullptr;
593 
594     /// SingleUseCondition is true if ConditionDef is dead except for the
595     /// branch(es) at the end of the basic block.
596     ///
597     bool SingleUseCondition = false;
598 
599     explicit MachineBranchPredicate() = default;
600   };
601 
602   /// Analyze the branching code at the end of MBB and parse it into the
603   /// MachineBranchPredicate structure if possible.  Returns false on success
604   /// and true on failure.
605   ///
606   /// If AllowModify is true, then this routine is allowed to modify the basic
607   /// block (e.g. delete instructions after the unconditional branch).
608   ///
609   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
610                                       MachineBranchPredicate &MBP,
611                                       bool AllowModify = false) const {
612     return true;
613   }
614 
615   /// Remove the branching code at the end of the specific MBB.
616   /// This is only invoked in cases where AnalyzeBranch returns success. It
617   /// returns the number of instructions that were removed.
618   /// If \p BytesRemoved is non-null, report the change in code size from the
619   /// removed instructions.
620   virtual unsigned removeBranch(MachineBasicBlock &MBB,
621                                 int *BytesRemoved = nullptr) const {
622     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
623   }
624 
625   /// Insert branch code into the end of the specified MachineBasicBlock. The
626   /// operands to this method are the same as those returned by AnalyzeBranch.
627   /// This is only invoked in cases where AnalyzeBranch returns success. It
628   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
629   /// report the change in code size from the added instructions.
630   ///
631   /// It is also invoked by tail merging to add unconditional branches in
632   /// cases where AnalyzeBranch doesn't apply because there was no original
633   /// branch to analyze.  At least this much must be implemented, else tail
634   /// merging needs to be disabled.
635   ///
636   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
637   /// before calling this function.
638   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
639                                 MachineBasicBlock *FBB,
640                                 ArrayRef<MachineOperand> Cond,
641                                 const DebugLoc &DL,
642                                 int *BytesAdded = nullptr) const {
643     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
644   }
645 
646   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
647                                      MachineBasicBlock *DestBB,
648                                      const DebugLoc &DL,
649                                      int *BytesAdded = nullptr) const {
650     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
651                         BytesAdded);
652   }
653 
654   /// Analyze the loop code, return true if it cannot be understoo. Upon
655   /// success, this function returns false and returns information about the
656   /// induction variable and compare instruction used at the end.
analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)657   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
658                            MachineInstr *&CmpInst) const {
659     return true;
660   }
661 
662   /// Generate code to reduce the loop iteration by one and check if the loop
663   /// is finished.  Return the value/register of the new loop count.  We need
664   /// this function when peeling off one or more iterations of a loop. This
665   /// function assumes the nth iteration is peeled first.
reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)666   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
667                                    MachineInstr &Cmp,
668                                    SmallVectorImpl<MachineOperand> &Cond,
669                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
670                                    unsigned Iter, unsigned MaxIter) const {
671     llvm_unreachable("Target didn't implement ReduceLoopCount");
672   }
673 
674   /// Delete the instruction OldInst and everything after it, replacing it with
675   /// an unconditional branch to NewDest. This is used by the tail merging pass.
676   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
677                                        MachineBasicBlock *NewDest) const;
678 
679   /// Return true if it's legal to split the given basic
680   /// block at the specified instruction (i.e. instruction would be the start
681   /// of a new basic block).
isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)682   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
683                                    MachineBasicBlock::iterator MBBI) const {
684     return true;
685   }
686 
687   /// Return true if it's profitable to predicate
688   /// instructions with accumulated instruction latency of "NumCycles"
689   /// of the specified basic block, where the probability of the instructions
690   /// being executed is given by Probability, and Confidence is a measure
691   /// of our confidence that it will be properly predicted.
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)692   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
693                                    unsigned ExtraPredCycles,
694                                    BranchProbability Probability) const {
695     return false;
696   }
697 
698   /// Second variant of isProfitableToIfCvt. This one
699   /// checks for the case where two basic blocks from true and false path
700   /// of a if-then-else (diamond) are predicated on mutally exclusive
701   /// predicates, where the probability of the true path being taken is given
702   /// by Probability, and Confidence is a measure of our confidence that it
703   /// will be properly predicted.
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)704   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
705                                    unsigned ExtraTCycles,
706                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
707                                    unsigned ExtraFCycles,
708                                    BranchProbability Probability) const {
709     return false;
710   }
711 
712   /// Return true if it's profitable for if-converter to duplicate instructions
713   /// of specified accumulated instruction latencies in the specified MBB to
714   /// enable if-conversion.
715   /// The probability of the instructions being executed is given by
716   /// Probability, and Confidence is a measure of our confidence that it
717   /// will be properly predicted.
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)718   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
719                                          unsigned NumCycles,
720                                          BranchProbability Probability) const {
721     return false;
722   }
723 
724   /// Return true if it's profitable to unpredicate
725   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
726   /// exclusive predicates.
727   /// e.g.
728   ///   subeq  r0, r1, #1
729   ///   addne  r0, r1, #1
730   /// =>
731   ///   sub    r0, r1, #1
732   ///   addne  r0, r1, #1
733   ///
734   /// This may be profitable is conditional instructions are always executed.
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)735   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
736                                          MachineBasicBlock &FMBB) const {
737     return false;
738   }
739 
740   /// Return true if it is possible to insert a select
741   /// instruction that chooses between TrueReg and FalseReg based on the
742   /// condition code in Cond.
743   ///
744   /// When successful, also return the latency in cycles from TrueReg,
745   /// FalseReg, and Cond to the destination register. In most cases, a select
746   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
747   ///
748   /// Some x86 implementations have 2-cycle cmov instructions.
749   ///
750   /// @param MBB         Block where select instruction would be inserted.
751   /// @param Cond        Condition returned by AnalyzeBranch.
752   /// @param TrueReg     Virtual register to select when Cond is true.
753   /// @param FalseReg    Virtual register to select when Cond is false.
754   /// @param CondCycles  Latency from Cond+Branch to select output.
755   /// @param TrueCycles  Latency from TrueReg to select output.
756   /// @param FalseCycles Latency from FalseReg to select output.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)757   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
758                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
759                                unsigned FalseReg, int &CondCycles,
760                                int &TrueCycles, int &FalseCycles) const {
761     return false;
762   }
763 
764   /// Insert a select instruction into MBB before I that will copy TrueReg to
765   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
766   ///
767   /// This function can only be called after canInsertSelect() returned true.
768   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
769   /// that the same flags or registers required by Cond are available at the
770   /// insertion point.
771   ///
772   /// @param MBB      Block where select instruction should be inserted.
773   /// @param I        Insertion point.
774   /// @param DL       Source location for debugging.
775   /// @param DstReg   Virtual register to be defined by select instruction.
776   /// @param Cond     Condition as computed by AnalyzeBranch.
777   /// @param TrueReg  Virtual register to copy when Cond is true.
778   /// @param FalseReg Virtual register to copy when Cons is false.
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg)779   virtual void insertSelect(MachineBasicBlock &MBB,
780                             MachineBasicBlock::iterator I, const DebugLoc &DL,
781                             unsigned DstReg, ArrayRef<MachineOperand> Cond,
782                             unsigned TrueReg, unsigned FalseReg) const {
783     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
784   }
785 
786   /// Analyze the given select instruction, returning true if
787   /// it cannot be understood. It is assumed that MI->isSelect() is true.
788   ///
789   /// When successful, return the controlling condition and the operands that
790   /// determine the true and false result values.
791   ///
792   ///   Result = SELECT Cond, TrueOp, FalseOp
793   ///
794   /// Some targets can optimize select instructions, for example by predicating
795   /// the instruction defining one of the operands. Such targets should set
796   /// Optimizable.
797   ///
798   /// @param         MI Select instruction to analyze.
799   /// @param Cond    Condition controlling the select.
800   /// @param TrueOp  Operand number of the value selected when Cond is true.
801   /// @param FalseOp Operand number of the value selected when Cond is false.
802   /// @param Optimizable Returned as true if MI is optimizable.
803   /// @returns False on success.
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)804   virtual bool analyzeSelect(const MachineInstr &MI,
805                              SmallVectorImpl<MachineOperand> &Cond,
806                              unsigned &TrueOp, unsigned &FalseOp,
807                              bool &Optimizable) const {
808     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
809     return true;
810   }
811 
812   /// Given a select instruction that was understood by
813   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
814   /// merging it with one of its operands. Returns NULL on failure.
815   ///
816   /// When successful, returns the new select instruction. The client is
817   /// responsible for deleting MI.
818   ///
819   /// If both sides of the select can be optimized, PreferFalse is used to pick
820   /// a side.
821   ///
822   /// @param MI          Optimizable select instruction.
823   /// @param NewMIs     Set that record all MIs in the basic block up to \p
824   /// MI. Has to be updated with any newly created MI or deleted ones.
825   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
826   /// @returns Optimized instruction or NULL.
827   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
828                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
829                                        bool PreferFalse = false) const {
830     // This function must be implemented if Optimizable is ever set.
831     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
832   }
833 
834   /// Emit instructions to copy a pair of physical registers.
835   ///
836   /// This function should support copies within any legal register class as
837   /// well as any cross-class copies created during instruction selection.
838   ///
839   /// The source and destination registers may overlap, which may require a
840   /// careful implementation when multiple copy instructions are required for
841   /// large registers. See for example the ARM target.
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)842   virtual void copyPhysReg(MachineBasicBlock &MBB,
843                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
844                            unsigned DestReg, unsigned SrcReg,
845                            bool KillSrc) const {
846     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
847   }
848 
849   /// If the specific machine instruction is a instruction that moves/copies
850   /// value from one register to another register return true along with
851   /// @Source machine operand and @Destination machine operand.
isCopyInstr(const MachineInstr & MI,const MachineOperand * & SourceOpNum,const MachineOperand * & Destination)852   virtual bool isCopyInstr(const MachineInstr &MI,
853                            const MachineOperand *&SourceOpNum,
854                            const MachineOperand *&Destination) const {
855     return false;
856   }
857 
858   /// Store the specified register of the given register class to the specified
859   /// stack frame index. The store instruction is to be added to the given
860   /// machine basic block before the specified machine instruction. If isKill
861   /// is true, the register operand is the last use and must be marked kill.
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)862   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
863                                    MachineBasicBlock::iterator MI,
864                                    unsigned SrcReg, bool isKill, int FrameIndex,
865                                    const TargetRegisterClass *RC,
866                                    const TargetRegisterInfo *TRI) const {
867     llvm_unreachable("Target didn't implement "
868                      "TargetInstrInfo::storeRegToStackSlot!");
869   }
870 
871   /// Load the specified register of the given register class from the specified
872   /// stack frame index. The load instruction is to be added to the given
873   /// machine basic block before the specified machine instruction.
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)874   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
875                                     MachineBasicBlock::iterator MI,
876                                     unsigned DestReg, int FrameIndex,
877                                     const TargetRegisterClass *RC,
878                                     const TargetRegisterInfo *TRI) const {
879     llvm_unreachable("Target didn't implement "
880                      "TargetInstrInfo::loadRegFromStackSlot!");
881   }
882 
883   /// This function is called for all pseudo instructions
884   /// that remain after register allocation. Many pseudo instructions are
885   /// created to help register allocation. This is the place to convert them
886   /// into real instructions. The target can edit MI in place, or it can insert
887   /// new instructions and erase MI. The function should return true if
888   /// anything was changed.
expandPostRAPseudo(MachineInstr & MI)889   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
890 
891   /// Check whether the target can fold a load that feeds a subreg operand
892   /// (or a subreg operand that feeds a store).
893   /// For example, X86 may want to return true if it can fold
894   /// movl (%esp), %eax
895   /// subb, %al, ...
896   /// Into:
897   /// subb (%esp), ...
898   ///
899   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
900   /// reject subregs - but since this behavior used to be enforced in the
901   /// target-independent code, moving this responsibility to the targets
902   /// has the potential of causing nasty silent breakage in out-of-tree targets.
isSubregFoldable()903   virtual bool isSubregFoldable() const { return false; }
904 
905   /// Attempt to fold a load or store of the specified stack
906   /// slot into the specified machine instruction for the specified operand(s).
907   /// If this is possible, a new instruction is returned with the specified
908   /// operand folded, otherwise NULL is returned.
909   /// The new instruction is inserted before MI, and the client is responsible
910   /// for removing the old instruction.
911   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
912                                   int FI,
913                                   LiveIntervals *LIS = nullptr) const;
914 
915   /// Same as the previous version except it allows folding of any load and
916   /// store from / to any address, not just from a specific stack slot.
917   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
918                                   MachineInstr &LoadMI,
919                                   LiveIntervals *LIS = nullptr) const;
920 
921   /// Return true when there is potentially a faster code sequence
922   /// for an instruction chain ending in \p Root. All potential patterns are
923   /// returned in the \p Pattern vector. Pattern should be sorted in priority
924   /// order since the pattern evaluator stops checking as soon as it finds a
925   /// faster sequence.
926   /// \param Root - Instruction that could be combined with one of its operands
927   /// \param Patterns - Vector of possible combination patterns
928   virtual bool getMachineCombinerPatterns(
929       MachineInstr &Root,
930       SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
931 
932   /// Return true when a code sequence can improve throughput. It
933   /// should be called only for instructions in loops.
934   /// \param Pattern - combiner pattern
935   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
936 
937   /// Return true if the input \P Inst is part of a chain of dependent ops
938   /// that are suitable for reassociation, otherwise return false.
939   /// If the instruction's operands must be commuted to have a previous
940   /// instruction of the same type define the first source operand, \P Commuted
941   /// will be set to true.
942   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
943 
944   /// Return true when \P Inst is both associative and commutative.
isAssociativeAndCommutative(const MachineInstr & Inst)945   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
946     return false;
947   }
948 
949   /// Return true when \P Inst has reassociable operands in the same \P MBB.
950   virtual bool hasReassociableOperands(const MachineInstr &Inst,
951                                        const MachineBasicBlock *MBB) const;
952 
953   /// Return true when \P Inst has reassociable sibling.
954   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
955 
956   /// When getMachineCombinerPatterns() finds patterns, this function generates
957   /// the instructions that could replace the original code sequence. The client
958   /// has to decide whether the actual replacement is beneficial or not.
959   /// \param Root - Instruction that could be combined with one of its operands
960   /// \param Pattern - Combination pattern for Root
961   /// \param InsInstrs - Vector of new instructions that implement P
962   /// \param DelInstrs - Old instructions, including Root, that could be
963   /// replaced by InsInstr
964   /// \param InstIdxForVirtReg - map of virtual register to instruction in
965   /// InsInstr that defines it
966   virtual void genAlternativeCodeSequence(
967       MachineInstr &Root, MachineCombinerPattern Pattern,
968       SmallVectorImpl<MachineInstr *> &InsInstrs,
969       SmallVectorImpl<MachineInstr *> &DelInstrs,
970       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
971 
972   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
973   /// reduce critical path length.
974   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
975                       MachineCombinerPattern Pattern,
976                       SmallVectorImpl<MachineInstr *> &InsInstrs,
977                       SmallVectorImpl<MachineInstr *> &DelInstrs,
978                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
979 
980   /// This is an architecture-specific helper function of reassociateOps.
981   /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)982   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
983                                      MachineInstr &NewMI1,
984                                      MachineInstr &NewMI2) const {}
985 
986   /// Return true when a target supports MachineCombiner.
useMachineCombiner()987   virtual bool useMachineCombiner() const { return false; }
988 
989   /// Return true if the given SDNode can be copied during scheduling
990   /// even if it has glue.
canCopyGluedNodeDuringSchedule(SDNode * N)991   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
992 
993 protected:
994   /// Target-dependent implementation for foldMemoryOperand.
995   /// Target-independent code in foldMemoryOperand will
996   /// take care of adding a MachineMemOperand to the newly created instruction.
997   /// The instruction and any auxiliary instructions necessary will be inserted
998   /// at InsertPt.
999   virtual MachineInstr *
1000   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1001                         ArrayRef<unsigned> Ops,
1002                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1003                         LiveIntervals *LIS = nullptr) const {
1004     return nullptr;
1005   }
1006 
1007   /// Target-dependent implementation for foldMemoryOperand.
1008   /// Target-independent code in foldMemoryOperand will
1009   /// take care of adding a MachineMemOperand to the newly created instruction.
1010   /// The instruction and any auxiliary instructions necessary will be inserted
1011   /// at InsertPt.
1012   virtual MachineInstr *foldMemoryOperandImpl(
1013       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1014       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1015       LiveIntervals *LIS = nullptr) const {
1016     return nullptr;
1017   }
1018 
1019   /// Target-dependent implementation of getRegSequenceInputs.
1020   ///
1021   /// \returns true if it is possible to build the equivalent
1022   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1023   ///
1024   /// \pre MI.isRegSequenceLike().
1025   ///
1026   /// \see TargetInstrInfo::getRegSequenceInputs.
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)1027   virtual bool getRegSequenceLikeInputs(
1028       const MachineInstr &MI, unsigned DefIdx,
1029       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1030     return false;
1031   }
1032 
1033   /// Target-dependent implementation of getExtractSubregInputs.
1034   ///
1035   /// \returns true if it is possible to build the equivalent
1036   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1037   ///
1038   /// \pre MI.isExtractSubregLike().
1039   ///
1040   /// \see TargetInstrInfo::getExtractSubregInputs.
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)1041   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1042                                           unsigned DefIdx,
1043                                           RegSubRegPairAndIdx &InputReg) const {
1044     return false;
1045   }
1046 
1047   /// Target-dependent implementation of getInsertSubregInputs.
1048   ///
1049   /// \returns true if it is possible to build the equivalent
1050   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1051   ///
1052   /// \pre MI.isInsertSubregLike().
1053   ///
1054   /// \see TargetInstrInfo::getInsertSubregInputs.
1055   virtual bool
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)1056   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1057                             RegSubRegPair &BaseReg,
1058                             RegSubRegPairAndIdx &InsertedReg) const {
1059     return false;
1060   }
1061 
1062 public:
1063   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1064   /// (e.g. stack) the target returns the corresponding address space.
1065   virtual unsigned
getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind)1066   getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const {
1067     return 0;
1068   }
1069 
1070   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1071   /// a store or a load and a store into two or more instruction. If this is
1072   /// possible, returns true as well as the new instructions by reference.
1073   virtual bool
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)1074   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1075                       bool UnfoldLoad, bool UnfoldStore,
1076                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1077     return false;
1078   }
1079 
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)1080   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1081                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1082     return false;
1083   }
1084 
1085   /// Returns the opcode of the would be new
1086   /// instruction after load / store are unfolded from an instruction of the
1087   /// specified opcode. It returns zero if the specified unfolding is not
1088   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1089   /// index of the operand which will hold the register holding the loaded
1090   /// value.
1091   virtual unsigned
1092   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1093                              unsigned *LoadRegIndex = nullptr) const {
1094     return 0;
1095   }
1096 
1097   /// This is used by the pre-regalloc scheduler to determine if two loads are
1098   /// loading from the same base address. It should only return true if the base
1099   /// pointers are the same and the only differences between the two addresses
1100   /// are the offset. It also returns the offsets by reference.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1101   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1102                                        int64_t &Offset1,
1103                                        int64_t &Offset2) const {
1104     return false;
1105   }
1106 
1107   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1108   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1109   /// On some targets if two loads are loading from
1110   /// addresses in the same cache line, it's better if they are scheduled
1111   /// together. This function takes two integers that represent the load offsets
1112   /// from the common base address. It returns true if it decides it's desirable
1113   /// to schedule the two loads together. "NumLoads" is the number of loads that
1114   /// have already been scheduled after Load1.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1115   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1116                                        int64_t Offset1, int64_t Offset2,
1117                                        unsigned NumLoads) const {
1118     return false;
1119   }
1120 
1121   /// Get the base register and byte offset of an instruction that reads/writes
1122   /// memory.
getMemOpBaseRegImmOfs(MachineInstr & MemOp,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI)1123   virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1124                                      int64_t &Offset,
1125                                      const TargetRegisterInfo *TRI) const {
1126     return false;
1127   }
1128 
1129   /// Return true if the instruction contains a base register and offset. If
1130   /// true, the function also sets the operand position in the instruction
1131   /// for the base register and offset.
getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos)1132   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1133                                         unsigned &BasePos,
1134                                         unsigned &OffsetPos) const {
1135     return false;
1136   }
1137 
1138   /// If the instruction is an increment of a constant value, return the amount.
getIncrementValue(const MachineInstr & MI,int & Value)1139   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1140     return false;
1141   }
1142 
1143   /// Returns true if the two given memory operations should be scheduled
1144   /// adjacent. Note that you have to add:
1145   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1146   /// or
1147   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1148   /// to TargetPassConfig::createMachineScheduler() to have an effect.
shouldClusterMemOps(MachineInstr & FirstLdSt,unsigned BaseReg1,MachineInstr & SecondLdSt,unsigned BaseReg2,unsigned NumLoads)1149   virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
1150                                    MachineInstr &SecondLdSt, unsigned BaseReg2,
1151                                    unsigned NumLoads) const {
1152     llvm_unreachable("target did not implement shouldClusterMemOps()");
1153   }
1154 
1155   /// Reverses the branch condition of the specified condition list,
1156   /// returning false on success and true if it cannot be reversed.
1157   virtual bool
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1158   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1159     return true;
1160   }
1161 
1162   /// Insert a noop into the instruction stream at the specified point.
1163   virtual void insertNoop(MachineBasicBlock &MBB,
1164                           MachineBasicBlock::iterator MI) const;
1165 
1166   /// Return the noop instruction to use for a noop.
1167   virtual void getNoop(MCInst &NopInst) const;
1168 
1169   /// Return true for post-incremented instructions.
isPostIncrement(const MachineInstr & MI)1170   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1171 
1172   /// Returns true if the instruction is already predicated.
isPredicated(const MachineInstr & MI)1173   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1174 
1175   /// Returns true if the instruction is a
1176   /// terminator instruction that has not been predicated.
1177   virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1178 
1179   /// Returns true if MI is an unconditional tail call.
isUnconditionalTailCall(const MachineInstr & MI)1180   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1181     return false;
1182   }
1183 
1184   /// Returns true if the tail call can be made conditional on BranchCond.
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1185   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1186                                           const MachineInstr &TailCall) const {
1187     return false;
1188   }
1189 
1190   /// Replace the conditional branch in MBB with a conditional tail call.
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1191   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1192                                          SmallVectorImpl<MachineOperand> &Cond,
1193                                          const MachineInstr &TailCall) const {
1194     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1195   }
1196 
1197   /// Convert the instruction into a predicated instruction.
1198   /// It returns true if the operation was successful.
1199   virtual bool PredicateInstruction(MachineInstr &MI,
1200                                     ArrayRef<MachineOperand> Pred) const;
1201 
1202   /// Returns true if the first specified predicate
1203   /// subsumes the second, e.g. GE subsumes GT.
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1204   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1205                                  ArrayRef<MachineOperand> Pred2) const {
1206     return false;
1207   }
1208 
1209   /// If the specified instruction defines any predicate
1210   /// or condition code register(s) used for predication, returns true as well
1211   /// as the definition predicate(s) by reference.
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred)1212   virtual bool DefinesPredicate(MachineInstr &MI,
1213                                 std::vector<MachineOperand> &Pred) const {
1214     return false;
1215   }
1216 
1217   /// Return true if the specified instruction can be predicated.
1218   /// By default, this returns true for every instruction with a
1219   /// PredicateOperand.
isPredicable(const MachineInstr & MI)1220   virtual bool isPredicable(const MachineInstr &MI) const {
1221     return MI.getDesc().isPredicable();
1222   }
1223 
1224   /// Return true if it's safe to move a machine
1225   /// instruction that defines the specified register class.
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1226   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1227     return true;
1228   }
1229 
1230   /// Test if the given instruction should be considered a scheduling boundary.
1231   /// This primarily includes labels and terminators.
1232   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1233                                     const MachineBasicBlock *MBB,
1234                                     const MachineFunction &MF) const;
1235 
1236   /// Measure the specified inline asm to determine an approximation of its
1237   /// length.
1238   virtual unsigned getInlineAsmLength(const char *Str,
1239                                       const MCAsmInfo &MAI) const;
1240 
1241   /// Allocate and return a hazard recognizer to use for this target when
1242   /// scheduling the machine instructions before register allocation.
1243   virtual ScheduleHazardRecognizer *
1244   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1245                                const ScheduleDAG *DAG) const;
1246 
1247   /// Allocate and return a hazard recognizer to use for this target when
1248   /// scheduling the machine instructions before register allocation.
1249   virtual ScheduleHazardRecognizer *
1250   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1251                                  const ScheduleDAG *DAG) const;
1252 
1253   /// Allocate and return a hazard recognizer to use for this target when
1254   /// scheduling the machine instructions after register allocation.
1255   virtual ScheduleHazardRecognizer *
1256   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1257                                      const ScheduleDAG *DAG) const;
1258 
1259   /// Allocate and return a hazard recognizer to use for by non-scheduling
1260   /// passes.
1261   virtual ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1262   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1263     return nullptr;
1264   }
1265 
1266   /// Provide a global flag for disabling the PreRA hazard recognizer that
1267   /// targets may choose to honor.
1268   bool usePreRAHazardRecognizer() const;
1269 
1270   /// For a comparison instruction, return the source registers
1271   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1272   /// compares against in CmpValue. Return true if the comparison instruction
1273   /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)1274   virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1275                               unsigned &SrcReg2, int &Mask, int &Value) const {
1276     return false;
1277   }
1278 
1279   /// See if the comparison instruction can be converted
1280   /// into something more efficient. E.g., on ARM most instructions can set the
1281   /// flags register, obviating the need for a separate CMP.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1282   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1283                                     unsigned SrcReg2, int Mask, int Value,
1284                                     const MachineRegisterInfo *MRI) const {
1285     return false;
1286   }
optimizeCondBranch(MachineInstr & MI)1287   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1288 
1289   /// Try to remove the load by folding it to a register operand at the use.
1290   /// We fold the load instructions if and only if the
1291   /// def and use are in the same BB. We only look at one load and see
1292   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1293   /// defined by the load we are trying to fold. DefMI returns the machine
1294   /// instruction that defines FoldAsLoadDefReg, and the function returns
1295   /// the machine instruction generated due to folding.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)1296   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1297                                           const MachineRegisterInfo *MRI,
1298                                           unsigned &FoldAsLoadDefReg,
1299                                           MachineInstr *&DefMI) const {
1300     return nullptr;
1301   }
1302 
1303   /// 'Reg' is known to be defined by a move immediate instruction,
1304   /// try to fold the immediate into the use instruction.
1305   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1306   /// then the caller may assume that DefMI has been erased from its parent
1307   /// block. The caller may assume that it will not be erased by this
1308   /// function otherwise.
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI)1309   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1310                              unsigned Reg, MachineRegisterInfo *MRI) const {
1311     return false;
1312   }
1313 
1314   /// Return the number of u-operations the given machine
1315   /// instruction will be decoded to on the target cpu. The itinerary's
1316   /// IssueWidth is the number of microops that can be dispatched each
1317   /// cycle. An instruction with zero microops takes no dispatch resources.
1318   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1319                                   const MachineInstr &MI) const;
1320 
1321   /// Return true for pseudo instructions that don't consume any
1322   /// machine resources in their current form. These are common cases that the
1323   /// scheduler should consider free, rather than conservatively handling them
1324   /// as instructions with no itinerary.
isZeroCost(unsigned Opcode)1325   bool isZeroCost(unsigned Opcode) const {
1326     return Opcode <= TargetOpcode::COPY;
1327   }
1328 
1329   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1330                                 SDNode *DefNode, unsigned DefIdx,
1331                                 SDNode *UseNode, unsigned UseIdx) const;
1332 
1333   /// Compute and return the use operand latency of a given pair of def and use.
1334   /// In most cases, the static scheduling itinerary was enough to determine the
1335   /// operand latency. But it may not be possible for instructions with variable
1336   /// number of defs / uses.
1337   ///
1338   /// This is a raw interface to the itinerary that may be directly overridden
1339   /// by a target. Use computeOperandLatency to get the best estimate of
1340   /// latency.
1341   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1342                                 const MachineInstr &DefMI, unsigned DefIdx,
1343                                 const MachineInstr &UseMI,
1344                                 unsigned UseIdx) const;
1345 
1346   /// Compute the instruction latency of a given instruction.
1347   /// If the instruction has higher cost when predicated, it's returned via
1348   /// PredCost.
1349   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1350                                    const MachineInstr &MI,
1351                                    unsigned *PredCost = nullptr) const;
1352 
1353   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1354 
1355   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1356                               SDNode *Node) const;
1357 
1358   /// Return the default expected latency for a def based on its opcode.
1359   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1360                              const MachineInstr &DefMI) const;
1361 
1362   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1363                                const MachineInstr &DefMI) const;
1364 
1365   /// Return true if this opcode has high latency to its result.
isHighLatencyDef(int opc)1366   virtual bool isHighLatencyDef(int opc) const { return false; }
1367 
1368   /// Compute operand latency between a def of 'Reg'
1369   /// and a use in the current loop. Return true if the target considered
1370   /// it 'high'. This is used by optimization passes such as machine LICM to
1371   /// determine whether it makes sense to hoist an instruction out even in a
1372   /// high register pressure situation.
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1373   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1374                                      const MachineRegisterInfo *MRI,
1375                                      const MachineInstr &DefMI, unsigned DefIdx,
1376                                      const MachineInstr &UseMI,
1377                                      unsigned UseIdx) const {
1378     return false;
1379   }
1380 
1381   /// Compute operand latency of a def of 'Reg'. Return true
1382   /// if the target considered it 'low'.
1383   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1384                                 const MachineInstr &DefMI,
1385                                 unsigned DefIdx) const;
1386 
1387   /// Perform target-specific instruction verification.
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1388   virtual bool verifyInstruction(const MachineInstr &MI,
1389                                  StringRef &ErrInfo) const {
1390     return true;
1391   }
1392 
1393   /// Return the current execution domain and bit mask of
1394   /// possible domains for instruction.
1395   ///
1396   /// Some micro-architectures have multiple execution domains, and multiple
1397   /// opcodes that perform the same operation in different domains.  For
1398   /// example, the x86 architecture provides the por, orps, and orpd
1399   /// instructions that all do the same thing.  There is a latency penalty if a
1400   /// register is written in one domain and read in another.
1401   ///
1402   /// This function returns a pair (domain, mask) containing the execution
1403   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1404   /// function can be used to change the opcode to one of the domains in the
1405   /// bit mask.  Instructions whose execution domain can't be changed should
1406   /// return a 0 mask.
1407   ///
1408   /// The execution domain numbers don't have any special meaning except domain
1409   /// 0 is used for instructions that are not associated with any interesting
1410   /// execution domain.
1411   ///
1412   virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI)1413   getExecutionDomain(const MachineInstr &MI) const {
1414     return std::make_pair(0, 0);
1415   }
1416 
1417   /// Change the opcode of MI to execute in Domain.
1418   ///
1419   /// The bit (1 << Domain) must be set in the mask returned from
1420   /// getExecutionDomain(MI).
setExecutionDomain(MachineInstr & MI,unsigned Domain)1421   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1422 
1423   /// Returns the preferred minimum clearance
1424   /// before an instruction with an unwanted partial register update.
1425   ///
1426   /// Some instructions only write part of a register, and implicitly need to
1427   /// read the other parts of the register.  This may cause unwanted stalls
1428   /// preventing otherwise unrelated instructions from executing in parallel in
1429   /// an out-of-order CPU.
1430   ///
1431   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1432   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1433   /// the instruction needs to wait for the old value of the register to become
1434   /// available:
1435   ///
1436   ///   addps %xmm1, %xmm0
1437   ///   movaps %xmm0, (%rax)
1438   ///   cvtsi2ss %rbx, %xmm0
1439   ///
1440   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1441   /// instruction before it can issue, even though the high bits of %xmm0
1442   /// probably aren't needed.
1443   ///
1444   /// This hook returns the preferred clearance before MI, measured in
1445   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1446   /// instructions before MI.  It should only return a positive value for
1447   /// unwanted dependencies.  If the old bits of the defined register have
1448   /// useful values, or if MI is determined to otherwise read the dependency,
1449   /// the hook should return 0.
1450   ///
1451   /// The unwanted dependency may be handled by:
1452   ///
1453   /// 1. Allocating the same register for an MI def and use.  That makes the
1454   ///    unwanted dependency identical to a required dependency.
1455   ///
1456   /// 2. Allocating a register for the def that has no defs in the previous N
1457   ///    instructions.
1458   ///
1459   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1460   ///    allows the target to insert a dependency breaking instruction.
1461   ///
1462   virtual unsigned
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1463   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1464                                const TargetRegisterInfo *TRI) const {
1465     // The default implementation returns 0 for no partial register dependency.
1466     return 0;
1467   }
1468 
1469   /// Return the minimum clearance before an instruction that reads an
1470   /// unused register.
1471   ///
1472   /// For example, AVX instructions may copy part of a register operand into
1473   /// the unused high bits of the destination register.
1474   ///
1475   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1476   ///
1477   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1478   /// false dependence on any previous write to %xmm0.
1479   ///
1480   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1481   /// does not take an operand index. Instead sets \p OpNum to the index of the
1482   /// unused register.
getUndefRegClearance(const MachineInstr & MI,unsigned & OpNum,const TargetRegisterInfo * TRI)1483   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1484                                         const TargetRegisterInfo *TRI) const {
1485     // The default implementation returns 0 for no undef register dependency.
1486     return 0;
1487   }
1488 
1489   /// Insert a dependency-breaking instruction
1490   /// before MI to eliminate an unwanted dependency on OpNum.
1491   ///
1492   /// If it wasn't possible to avoid a def in the last N instructions before MI
1493   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1494   /// unwanted dependency.
1495   ///
1496   /// On x86, an xorps instruction can be used as a dependency breaker:
1497   ///
1498   ///   addps %xmm1, %xmm0
1499   ///   movaps %xmm0, (%rax)
1500   ///   xorps %xmm0, %xmm0
1501   ///   cvtsi2ss %rbx, %xmm0
1502   ///
1503   /// An <imp-kill> operand should be added to MI if an instruction was
1504   /// inserted.  This ties the instructions together in the post-ra scheduler.
1505   ///
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1506   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1507                                          const TargetRegisterInfo *TRI) const {}
1508 
1509   /// Create machine specific model for scheduling.
1510   virtual DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &)1511   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1512     return nullptr;
1513   }
1514 
1515   /// Sometimes, it is possible for the target
1516   /// to tell, even without aliasing information, that two MIs access different
1517   /// memory addresses. This function returns true if two MIs access different
1518   /// memory addresses and false otherwise.
1519   ///
1520   /// Assumes any physical registers used to compute addresses have the same
1521   /// value for both instructions. (This is the most useful assumption for
1522   /// post-RA scheduling.)
1523   ///
1524   /// See also MachineInstr::mayAlias, which is implemented on top of this
1525   /// function.
1526   virtual bool
1527   areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1528                                   AliasAnalysis *AA = nullptr) const {
1529     assert((MIa.mayLoad() || MIa.mayStore()) &&
1530            "MIa must load from or modify a memory location");
1531     assert((MIb.mayLoad() || MIb.mayStore()) &&
1532            "MIb must load from or modify a memory location");
1533     return false;
1534   }
1535 
1536   /// Return the value to use for the MachineCSE's LookAheadLimit,
1537   /// which is a heuristic used for CSE'ing phys reg defs.
getMachineCSELookAheadLimit()1538   virtual unsigned getMachineCSELookAheadLimit() const {
1539     // The default lookahead is small to prevent unprofitable quadratic
1540     // behavior.
1541     return 5;
1542   }
1543 
1544   /// Return an array that contains the ids of the target indices (used for the
1545   /// TargetIndex machine operand) and their names.
1546   ///
1547   /// MIR Serialization is able to serialize only the target indices that are
1548   /// defined by this method.
1549   virtual ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices()1550   getSerializableTargetIndices() const {
1551     return None;
1552   }
1553 
1554   /// Decompose the machine operand's target flags into two values - the direct
1555   /// target flag value and any of bit flags that are applied.
1556   virtual std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned)1557   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1558     return std::make_pair(0u, 0u);
1559   }
1560 
1561   /// Return an array that contains the direct target flag values and their
1562   /// names.
1563   ///
1564   /// MIR Serialization is able to serialize only the target flags that are
1565   /// defined by this method.
1566   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags()1567   getSerializableDirectMachineOperandTargetFlags() const {
1568     return None;
1569   }
1570 
1571   /// Return an array that contains the bitmask target flag values and their
1572   /// names.
1573   ///
1574   /// MIR Serialization is able to serialize only the target flags that are
1575   /// defined by this method.
1576   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags()1577   getSerializableBitmaskMachineOperandTargetFlags() const {
1578     return None;
1579   }
1580 
1581   /// Return an array that contains the MMO target flag values and their
1582   /// names.
1583   ///
1584   /// MIR Serialization is able to serialize only the MMO target flags that are
1585   /// defined by this method.
1586   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
getSerializableMachineMemOperandTargetFlags()1587   getSerializableMachineMemOperandTargetFlags() const {
1588     return None;
1589   }
1590 
1591   /// Determines whether \p Inst is a tail call instruction. Override this
1592   /// method on targets that do not properly set MCID::Return and MCID::Call on
1593   /// tail call instructions."
isTailCall(const MachineInstr & Inst)1594   virtual bool isTailCall(const MachineInstr &Inst) const {
1595     return Inst.isReturn() && Inst.isCall();
1596   }
1597 
1598   /// True if the instruction is bound to the top of its basic block and no
1599   /// other instructions shall be inserted before it. This can be implemented
1600   /// to prevent register allocator to insert spills before such instructions.
isBasicBlockPrologue(const MachineInstr & MI)1601   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1602     return false;
1603   }
1604 
1605   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1606   /// information for a set of outlining candidates.
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs)1607   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1608       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1609     llvm_unreachable(
1610         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1611   }
1612 
1613   /// Returns how or if \p MI should be outlined.
1614   virtual outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags)1615   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1616     llvm_unreachable(
1617         "Target didn't implement TargetInstrInfo::getOutliningType!");
1618   }
1619 
1620   /// Returns target-defined flags defining properties of the MBB for
1621   /// the outliner.
getMachineOutlinerMBBFlags(MachineBasicBlock & MBB)1622   virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const {
1623     return 0x0;
1624   }
1625 
1626   /// Insert a custom frame for outlined functions.
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF)1627   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1628                                   const outliner::OutlinedFunction &OF) const {
1629     llvm_unreachable(
1630         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1631   }
1632 
1633   /// Insert a call to an outlined function into the program.
1634   /// Returns an iterator to the spot where we inserted the call. This must be
1635   /// implemented by the target.
1636   virtual MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C)1637   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1638                      MachineBasicBlock::iterator &It, MachineFunction &MF,
1639                      const outliner::Candidate &C) const {
1640     llvm_unreachable(
1641         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1642   }
1643 
1644   /// Return true if the function can safely be outlined from.
1645   /// A function \p MF is considered safe for outlining if an outlined function
1646   /// produced from instructions in F will produce a program which produces the
1647   /// same output for any set of given inputs.
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs)1648   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1649                                            bool OutlineFromLinkOnceODRs) const {
1650     llvm_unreachable("Target didn't implement "
1651                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1652   }
1653 
1654   /// Return true if the function should be outlined from by default.
shouldOutlineFromFunctionByDefault(MachineFunction & MF)1655   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1656     return false;
1657   }
1658 
1659 private:
1660   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1661   unsigned CatchRetOpcode;
1662   unsigned ReturnOpcode;
1663 };
1664 
1665 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1666 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1667   using RegInfo = DenseMapInfo<unsigned>;
1668 
1669   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1670     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1671                                           RegInfo::getEmptyKey());
1672   }
1673 
1674   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1675     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1676                                           RegInfo::getTombstoneKey());
1677   }
1678 
1679   /// Reuse getHashValue implementation from
1680   /// std::pair<unsigned, unsigned>.
1681   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1682     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1683     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1684   }
1685 
1686   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1687                       const TargetInstrInfo::RegSubRegPair &RHS) {
1688     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1689            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1690   }
1691 };
1692 
1693 } // end namespace llvm
1694 
1695 #endif // LLVM_TARGET_TARGETINSTRINFO_H
1696