1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 *
21 *===-----------------------------------------------------------------------===
22 */
23
24 #ifndef __IMMINTRIN_H
25 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
26 #endif
27
28 #ifndef __AVXINTRIN_H
29 #define __AVXINTRIN_H
30
31 typedef double __v4df __attribute__ ((__vector_size__ (32)));
32 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
33 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
34 typedef int __v8si __attribute__ ((__vector_size__ (32)));
35 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
36 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
37
38 /* Unsigned types */
39 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
40 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
41 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
42 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
43
44 /* We need an explicitly signed variant for char. Note that this shouldn't
45 * appear in the interface though. */
46 typedef signed char __v32qs __attribute__((__vector_size__(32)));
47
48 typedef float __m256 __attribute__ ((__vector_size__ (32)));
49 typedef double __m256d __attribute__((__vector_size__(32)));
50 typedef long long __m256i __attribute__((__vector_size__(32)));
51
52 /* Define the default attributes for the functions in this file. */
53 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
54
55 /* Arithmetic */
56 /// \brief Adds two 256-bit vectors of [4 x double].
57 ///
58 /// \headerfile <x86intrin.h>
59 ///
60 /// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
61 ///
62 /// \param __a
63 /// A 256-bit vector of [4 x double] containing one of the source operands.
64 /// \param __b
65 /// A 256-bit vector of [4 x double] containing one of the source operands.
66 /// \returns A 256-bit vector of [4 x double] containing the sums of both
67 /// operands.
68 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a,__m256d __b)69 _mm256_add_pd(__m256d __a, __m256d __b)
70 {
71 return (__m256d)((__v4df)__a+(__v4df)__b);
72 }
73
74 /// \brief Adds two 256-bit vectors of [8 x float].
75 ///
76 /// \headerfile <x86intrin.h>
77 ///
78 /// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
79 ///
80 /// \param __a
81 /// A 256-bit vector of [8 x float] containing one of the source operands.
82 /// \param __b
83 /// A 256-bit vector of [8 x float] containing one of the source operands.
84 /// \returns A 256-bit vector of [8 x float] containing the sums of both
85 /// operands.
86 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a,__m256 __b)87 _mm256_add_ps(__m256 __a, __m256 __b)
88 {
89 return (__m256)((__v8sf)__a+(__v8sf)__b);
90 }
91
92 /// \brief Subtracts two 256-bit vectors of [4 x double].
93 ///
94 /// \headerfile <x86intrin.h>
95 ///
96 /// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
97 ///
98 /// \param __a
99 /// A 256-bit vector of [4 x double] containing the minuend.
100 /// \param __b
101 /// A 256-bit vector of [4 x double] containing the subtrahend.
102 /// \returns A 256-bit vector of [4 x double] containing the differences between
103 /// both operands.
104 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a,__m256d __b)105 _mm256_sub_pd(__m256d __a, __m256d __b)
106 {
107 return (__m256d)((__v4df)__a-(__v4df)__b);
108 }
109
110 /// \brief Subtracts two 256-bit vectors of [8 x float].
111 ///
112 /// \headerfile <x86intrin.h>
113 ///
114 /// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
115 ///
116 /// \param __a
117 /// A 256-bit vector of [8 x float] containing the minuend.
118 /// \param __b
119 /// A 256-bit vector of [8 x float] containing the subtrahend.
120 /// \returns A 256-bit vector of [8 x float] containing the differences between
121 /// both operands.
122 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a,__m256 __b)123 _mm256_sub_ps(__m256 __a, __m256 __b)
124 {
125 return (__m256)((__v8sf)__a-(__v8sf)__b);
126 }
127
128 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
129 /// two 256-bit vectors of [4 x double].
130 ///
131 /// \headerfile <x86intrin.h>
132 ///
133 /// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
134 ///
135 /// \param __a
136 /// A 256-bit vector of [4 x double] containing the left source operand.
137 /// \param __b
138 /// A 256-bit vector of [4 x double] containing the right source operand.
139 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
140 /// and differences between both operands.
141 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a,__m256d __b)142 _mm256_addsub_pd(__m256d __a, __m256d __b)
143 {
144 return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
145 }
146
147 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
148 /// two 256-bit vectors of [8 x float].
149 ///
150 /// \headerfile <x86intrin.h>
151 ///
152 /// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
153 ///
154 /// \param __a
155 /// A 256-bit vector of [8 x float] containing the left source operand.
156 /// \param __b
157 /// A 256-bit vector of [8 x float] containing the right source operand.
158 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
159 /// differences between both operands.
160 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a,__m256 __b)161 _mm256_addsub_ps(__m256 __a, __m256 __b)
162 {
163 return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
164 }
165
166 /// \brief Divides two 256-bit vectors of [4 x double].
167 ///
168 /// \headerfile <x86intrin.h>
169 ///
170 /// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
171 ///
172 /// \param __a
173 /// A 256-bit vector of [4 x double] containing the dividend.
174 /// \param __b
175 /// A 256-bit vector of [4 x double] containing the divisor.
176 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
177 /// operands.
178 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a,__m256d __b)179 _mm256_div_pd(__m256d __a, __m256d __b)
180 {
181 return (__m256d)((__v4df)__a/(__v4df)__b);
182 }
183
184 /// \brief Divides two 256-bit vectors of [8 x float].
185 ///
186 /// \headerfile <x86intrin.h>
187 ///
188 /// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
189 ///
190 /// \param __a
191 /// A 256-bit vector of [8 x float] containing the dividend.
192 /// \param __b
193 /// A 256-bit vector of [8 x float] containing the divisor.
194 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
195 /// operands.
196 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a,__m256 __b)197 _mm256_div_ps(__m256 __a, __m256 __b)
198 {
199 return (__m256)((__v8sf)__a/(__v8sf)__b);
200 }
201
202 /// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
203 /// of each pair of values.
204 ///
205 /// \headerfile <x86intrin.h>
206 ///
207 /// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
208 ///
209 /// \param __a
210 /// A 256-bit vector of [4 x double] containing one of the operands.
211 /// \param __b
212 /// A 256-bit vector of [4 x double] containing one of the operands.
213 /// \returns A 256-bit vector of [4 x double] containing the maximum values
214 /// between both operands.
215 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a,__m256d __b)216 _mm256_max_pd(__m256d __a, __m256d __b)
217 {
218 return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
219 }
220
221 /// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
222 /// of each pair of values.
223 ///
224 /// \headerfile <x86intrin.h>
225 ///
226 /// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
227 ///
228 /// \param __a
229 /// A 256-bit vector of [8 x float] containing one of the operands.
230 /// \param __b
231 /// A 256-bit vector of [8 x float] containing one of the operands.
232 /// \returns A 256-bit vector of [8 x float] containing the maximum values
233 /// between both operands.
234 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a,__m256 __b)235 _mm256_max_ps(__m256 __a, __m256 __b)
236 {
237 return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
238 }
239
240 /// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
241 /// of each pair of values.
242 ///
243 /// \headerfile <x86intrin.h>
244 ///
245 /// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
246 ///
247 /// \param __a
248 /// A 256-bit vector of [4 x double] containing one of the operands.
249 /// \param __b
250 /// A 256-bit vector of [4 x double] containing one of the operands.
251 /// \returns A 256-bit vector of [4 x double] containing the minimum values
252 /// between both operands.
253 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a,__m256d __b)254 _mm256_min_pd(__m256d __a, __m256d __b)
255 {
256 return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
257 }
258
259 /// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
260 /// of each pair of values.
261 ///
262 /// \headerfile <x86intrin.h>
263 ///
264 /// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
265 ///
266 /// \param __a
267 /// A 256-bit vector of [8 x float] containing one of the operands.
268 /// \param __b
269 /// A 256-bit vector of [8 x float] containing one of the operands.
270 /// \returns A 256-bit vector of [8 x float] containing the minimum values
271 /// between both operands.
272 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a,__m256 __b)273 _mm256_min_ps(__m256 __a, __m256 __b)
274 {
275 return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
276 }
277
278 /// \brief Multiplies two 256-bit vectors of [4 x double].
279 ///
280 /// \headerfile <x86intrin.h>
281 ///
282 /// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
283 ///
284 /// \param __a
285 /// A 256-bit vector of [4 x double] containing one of the operands.
286 /// \param __b
287 /// A 256-bit vector of [4 x double] containing one of the operands.
288 /// \returns A 256-bit vector of [4 x double] containing the products of both
289 /// operands.
290 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a,__m256d __b)291 _mm256_mul_pd(__m256d __a, __m256d __b)
292 {
293 return (__m256d)((__v4df)__a * (__v4df)__b);
294 }
295
296 /// \brief Multiplies two 256-bit vectors of [8 x float].
297 ///
298 /// \headerfile <x86intrin.h>
299 ///
300 /// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
301 ///
302 /// \param __a
303 /// A 256-bit vector of [8 x float] containing one of the operands.
304 /// \param __b
305 /// A 256-bit vector of [8 x float] containing one of the operands.
306 /// \returns A 256-bit vector of [8 x float] containing the products of both
307 /// operands.
308 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a,__m256 __b)309 _mm256_mul_ps(__m256 __a, __m256 __b)
310 {
311 return (__m256)((__v8sf)__a * (__v8sf)__b);
312 }
313
314 /// \brief Calculates the square roots of the values in a 256-bit vector of
315 /// [4 x double].
316 ///
317 /// \headerfile <x86intrin.h>
318 ///
319 /// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
320 ///
321 /// \param __a
322 /// A 256-bit vector of [4 x double].
323 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
324 /// values in the operand.
325 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)326 _mm256_sqrt_pd(__m256d __a)
327 {
328 return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
329 }
330
331 /// \brief Calculates the square roots of the values in a 256-bit vector of
332 /// [8 x float].
333 ///
334 /// \headerfile <x86intrin.h>
335 ///
336 /// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
337 ///
338 /// \param __a
339 /// A 256-bit vector of [8 x float].
340 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
341 /// values in the operand.
342 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)343 _mm256_sqrt_ps(__m256 __a)
344 {
345 return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
346 }
347
348 /// \brief Calculates the reciprocal square roots of the values in a 256-bit
349 /// vector of [8 x float].
350 ///
351 /// \headerfile <x86intrin.h>
352 ///
353 /// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
354 ///
355 /// \param __a
356 /// A 256-bit vector of [8 x float].
357 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
358 /// roots of the values in the operand.
359 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)360 _mm256_rsqrt_ps(__m256 __a)
361 {
362 return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
363 }
364
365 /// \brief Calculates the reciprocals of the values in a 256-bit vector of
366 /// [8 x float].
367 ///
368 /// \headerfile <x86intrin.h>
369 ///
370 /// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
371 ///
372 /// \param __a
373 /// A 256-bit vector of [8 x float].
374 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
375 /// values in the operand.
376 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)377 _mm256_rcp_ps(__m256 __a)
378 {
379 return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
380 }
381
382 /// \brief Rounds the values in a 256-bit vector of [4 x double] as specified
383 /// by the byte operand. The source values are rounded to integer values and
384 /// returned as 64-bit double-precision floating-point values.
385 ///
386 /// \headerfile <x86intrin.h>
387 ///
388 /// \code
389 /// __m256d _mm256_round_pd(__m256d V, const int M);
390 /// \endcode
391 ///
392 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
393 ///
394 /// \param V
395 /// A 256-bit vector of [4 x double].
396 /// \param M
397 /// An integer value that specifies the rounding operation.
398 /// Bits [7:4] are reserved.
399 /// Bit [3] is a precision exception value:
400 /// 0: A normal PE exception is used.
401 /// 1: The PE field is not updated.
402 /// Bit [2] is the rounding control source:
403 /// 0: Use bits [1:0] of M.
404 /// 1: Use the current MXCSR setting.
405 /// Bits [1:0] contain the rounding control definition:
406 /// 00: Nearest.
407 /// 01: Downward (toward negative infinity).
408 /// 10: Upward (toward positive infinity).
409 /// 11: Truncated.
410 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
411 #define _mm256_round_pd(V, M) __extension__ ({ \
412 (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
413
414 /// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
415 /// specified by the byte operand. The source values are rounded to integer
416 /// values and returned as floating-point values.
417 ///
418 /// \headerfile <x86intrin.h>
419 ///
420 /// \code
421 /// __m256 _mm256_round_ps(__m256 V, const int M);
422 /// \endcode
423 ///
424 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
425 ///
426 /// \param V
427 /// A 256-bit vector of [8 x float].
428 /// \param M
429 /// An integer value that specifies the rounding operation.
430 /// Bits [7:4] are reserved.
431 /// Bit [3] is a precision exception value:
432 /// 0: A normal PE exception is used.
433 /// 1: The PE field is not updated.
434 /// Bit [2] is the rounding control source:
435 /// 0: Use bits [1:0] of M.
436 /// 1: Use the current MXCSR setting.
437 /// Bits [1:0] contain the rounding control definition:
438 /// 00: Nearest.
439 /// 01: Downward (toward negative infinity).
440 /// 10: Upward (toward positive infinity).
441 /// 11: Truncated.
442 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
443 #define _mm256_round_ps(V, M) __extension__ ({ \
444 (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
445
446 /// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The
447 /// source values are rounded up to integer values and returned as 64-bit
448 /// double-precision floating-point values.
449 ///
450 /// \headerfile <x86intrin.h>
451 ///
452 /// \code
453 /// __m256d _mm256_ceil_pd(__m256d V);
454 /// \endcode
455 ///
456 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
457 ///
458 /// \param V
459 /// A 256-bit vector of [4 x double].
460 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
461 #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
462
463 /// \brief Rounds down the values stored in a 256-bit vector of [4 x double].
464 /// The source values are rounded down to integer values and returned as
465 /// 64-bit double-precision floating-point values.
466 ///
467 /// \headerfile <x86intrin.h>
468 ///
469 /// \code
470 /// __m256d _mm256_floor_pd(__m256d V);
471 /// \endcode
472 ///
473 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
474 ///
475 /// \param V
476 /// A 256-bit vector of [4 x double].
477 /// \returns A 256-bit vector of [4 x double] containing the rounded down
478 /// values.
479 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
480
481 /// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The
482 /// source values are rounded up to integer values and returned as
483 /// floating-point values.
484 ///
485 /// \headerfile <x86intrin.h>
486 ///
487 /// \code
488 /// __m256 _mm256_ceil_ps(__m256 V);
489 /// \endcode
490 ///
491 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
492 ///
493 /// \param V
494 /// A 256-bit vector of [8 x float].
495 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
496 #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
497
498 /// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The
499 /// source values are rounded down to integer values and returned as
500 /// floating-point values.
501 ///
502 /// \headerfile <x86intrin.h>
503 ///
504 /// \code
505 /// __m256 _mm256_floor_ps(__m256 V);
506 /// \endcode
507 ///
508 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
509 ///
510 /// \param V
511 /// A 256-bit vector of [8 x float].
512 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
513 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
514
515 /* Logical */
516 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
517 ///
518 /// \headerfile <x86intrin.h>
519 ///
520 /// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
521 ///
522 /// \param __a
523 /// A 256-bit vector of [4 x double] containing one of the source operands.
524 /// \param __b
525 /// A 256-bit vector of [4 x double] containing one of the source operands.
526 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
527 /// values between both operands.
528 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a,__m256d __b)529 _mm256_and_pd(__m256d __a, __m256d __b)
530 {
531 return (__m256d)((__v4du)__a & (__v4du)__b);
532 }
533
534 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
535 ///
536 /// \headerfile <x86intrin.h>
537 ///
538 /// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
539 ///
540 /// \param __a
541 /// A 256-bit vector of [8 x float] containing one of the source operands.
542 /// \param __b
543 /// A 256-bit vector of [8 x float] containing one of the source operands.
544 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
545 /// values between both operands.
546 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a,__m256 __b)547 _mm256_and_ps(__m256 __a, __m256 __b)
548 {
549 return (__m256)((__v8su)__a & (__v8su)__b);
550 }
551
552 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
553 /// the one's complement of the values contained in the first source operand.
554 ///
555 /// \headerfile <x86intrin.h>
556 ///
557 /// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
558 ///
559 /// \param __a
560 /// A 256-bit vector of [4 x double] containing the left source operand. The
561 /// one's complement of this value is used in the bitwise AND.
562 /// \param __b
563 /// A 256-bit vector of [4 x double] containing the right source operand.
564 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
565 /// values of the second operand and the one's complement of the first
566 /// operand.
567 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a,__m256d __b)568 _mm256_andnot_pd(__m256d __a, __m256d __b)
569 {
570 return (__m256d)(~(__v4du)__a & (__v4du)__b);
571 }
572
573 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
574 /// the one's complement of the values contained in the first source operand.
575 ///
576 /// \headerfile <x86intrin.h>
577 ///
578 /// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
579 ///
580 /// \param __a
581 /// A 256-bit vector of [8 x float] containing the left source operand. The
582 /// one's complement of this value is used in the bitwise AND.
583 /// \param __b
584 /// A 256-bit vector of [8 x float] containing the right source operand.
585 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
586 /// values of the second operand and the one's complement of the first
587 /// operand.
588 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a,__m256 __b)589 _mm256_andnot_ps(__m256 __a, __m256 __b)
590 {
591 return (__m256)(~(__v8su)__a & (__v8su)__b);
592 }
593
594 /// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
595 ///
596 /// \headerfile <x86intrin.h>
597 ///
598 /// This intrinsic corresponds to the \c VORPD / ORPD instruction.
599 ///
600 /// \param __a
601 /// A 256-bit vector of [4 x double] containing one of the source operands.
602 /// \param __b
603 /// A 256-bit vector of [4 x double] containing one of the source operands.
604 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
605 /// values between both operands.
606 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a,__m256d __b)607 _mm256_or_pd(__m256d __a, __m256d __b)
608 {
609 return (__m256d)((__v4du)__a | (__v4du)__b);
610 }
611
612 /// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
613 ///
614 /// \headerfile <x86intrin.h>
615 ///
616 /// This intrinsic corresponds to the \c VORPS / ORPS instruction.
617 ///
618 /// \param __a
619 /// A 256-bit vector of [8 x float] containing one of the source operands.
620 /// \param __b
621 /// A 256-bit vector of [8 x float] containing one of the source operands.
622 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
623 /// values between both operands.
624 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a,__m256 __b)625 _mm256_or_ps(__m256 __a, __m256 __b)
626 {
627 return (__m256)((__v8su)__a | (__v8su)__b);
628 }
629
630 /// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
631 ///
632 /// \headerfile <x86intrin.h>
633 ///
634 /// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
635 ///
636 /// \param __a
637 /// A 256-bit vector of [4 x double] containing one of the source operands.
638 /// \param __b
639 /// A 256-bit vector of [4 x double] containing one of the source operands.
640 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
641 /// values between both operands.
642 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a,__m256d __b)643 _mm256_xor_pd(__m256d __a, __m256d __b)
644 {
645 return (__m256d)((__v4du)__a ^ (__v4du)__b);
646 }
647
648 /// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
649 ///
650 /// \headerfile <x86intrin.h>
651 ///
652 /// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
653 ///
654 /// \param __a
655 /// A 256-bit vector of [8 x float] containing one of the source operands.
656 /// \param __b
657 /// A 256-bit vector of [8 x float] containing one of the source operands.
658 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
659 /// values between both operands.
660 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a,__m256 __b)661 _mm256_xor_ps(__m256 __a, __m256 __b)
662 {
663 return (__m256)((__v8su)__a ^ (__v8su)__b);
664 }
665
666 /* Horizontal arithmetic */
667 /// \brief Horizontally adds the adjacent pairs of values contained in two
668 /// 256-bit vectors of [4 x double].
669 ///
670 /// \headerfile <x86intrin.h>
671 ///
672 /// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
673 ///
674 /// \param __a
675 /// A 256-bit vector of [4 x double] containing one of the source operands.
676 /// The horizontal sums of the values are returned in the even-indexed
677 /// elements of a vector of [4 x double].
678 /// \param __b
679 /// A 256-bit vector of [4 x double] containing one of the source operands.
680 /// The horizontal sums of the values are returned in the odd-indexed
681 /// elements of a vector of [4 x double].
682 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
683 /// both operands.
684 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a,__m256d __b)685 _mm256_hadd_pd(__m256d __a, __m256d __b)
686 {
687 return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
688 }
689
690 /// \brief Horizontally adds the adjacent pairs of values contained in two
691 /// 256-bit vectors of [8 x float].
692 ///
693 /// \headerfile <x86intrin.h>
694 ///
695 /// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
696 ///
697 /// \param __a
698 /// A 256-bit vector of [8 x float] containing one of the source operands.
699 /// The horizontal sums of the values are returned in the elements with
700 /// index 0, 1, 4, 5 of a vector of [8 x float].
701 /// \param __b
702 /// A 256-bit vector of [8 x float] containing one of the source operands.
703 /// The horizontal sums of the values are returned in the elements with
704 /// index 2, 3, 6, 7 of a vector of [8 x float].
705 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
706 /// both operands.
707 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a,__m256 __b)708 _mm256_hadd_ps(__m256 __a, __m256 __b)
709 {
710 return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
711 }
712
713 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
714 /// 256-bit vectors of [4 x double].
715 ///
716 /// \headerfile <x86intrin.h>
717 ///
718 /// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
719 ///
720 /// \param __a
721 /// A 256-bit vector of [4 x double] containing one of the source operands.
722 /// The horizontal differences between the values are returned in the
723 /// even-indexed elements of a vector of [4 x double].
724 /// \param __b
725 /// A 256-bit vector of [4 x double] containing one of the source operands.
726 /// The horizontal differences between the values are returned in the
727 /// odd-indexed elements of a vector of [4 x double].
728 /// \returns A 256-bit vector of [4 x double] containing the horizontal
729 /// differences of both operands.
730 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a,__m256d __b)731 _mm256_hsub_pd(__m256d __a, __m256d __b)
732 {
733 return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
734 }
735
736 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
737 /// 256-bit vectors of [8 x float].
738 ///
739 /// \headerfile <x86intrin.h>
740 ///
741 /// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
742 ///
743 /// \param __a
744 /// A 256-bit vector of [8 x float] containing one of the source operands.
745 /// The horizontal differences between the values are returned in the
746 /// elements with index 0, 1, 4, 5 of a vector of [8 x float].
747 /// \param __b
748 /// A 256-bit vector of [8 x float] containing one of the source operands.
749 /// The horizontal differences between the values are returned in the
750 /// elements with index 2, 3, 6, 7 of a vector of [8 x float].
751 /// \returns A 256-bit vector of [8 x float] containing the horizontal
752 /// differences of both operands.
753 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a,__m256 __b)754 _mm256_hsub_ps(__m256 __a, __m256 __b)
755 {
756 return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
757 }
758
759 /* Vector permutations */
760 /// \brief Copies the values in a 128-bit vector of [2 x double] as specified
761 /// by the 128-bit integer vector operand.
762 ///
763 /// \headerfile <x86intrin.h>
764 ///
765 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
766 ///
767 /// \param __a
768 /// A 128-bit vector of [2 x double].
769 /// \param __c
770 /// A 128-bit integer vector operand specifying how the values are to be
771 /// copied.
772 /// Bit [1]:
773 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
774 /// returned vector.
775 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
776 /// returned vector.
777 /// Bit [65]:
778 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
779 /// returned vector.
780 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
781 /// returned vector.
782 /// \returns A 128-bit vector of [2 x double] containing the copied values.
783 static __inline __m128d __DEFAULT_FN_ATTRS
_mm_permutevar_pd(__m128d __a,__m128i __c)784 _mm_permutevar_pd(__m128d __a, __m128i __c)
785 {
786 return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
787 }
788
789 /// \brief Copies the values in a 256-bit vector of [4 x double] as
790 /// specified by the 256-bit integer vector operand.
791 ///
792 /// \headerfile <x86intrin.h>
793 ///
794 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
795 ///
796 /// \param __a
797 /// A 256-bit vector of [4 x double].
798 /// \param __c
799 /// A 256-bit integer vector operand specifying how the values are to be
800 /// copied.
801 /// Bit [1]:
802 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
803 /// returned vector.
804 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
805 /// returned vector.
806 /// Bit [65]:
807 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
808 /// returned vector.
809 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
810 /// returned vector.
811 /// Bit [129]:
812 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
813 /// returned vector.
814 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
815 /// returned vector.
816 /// Bit [193]:
817 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
818 /// returned vector.
819 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
820 /// returned vector.
821 /// \returns A 256-bit vector of [4 x double] containing the copied values.
822 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a,__m256i __c)823 _mm256_permutevar_pd(__m256d __a, __m256i __c)
824 {
825 return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
826 }
827
828 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
829 /// specified by the 128-bit integer vector operand.
830 ///
831 /// \headerfile <x86intrin.h>
832 ///
833 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
834 ///
835 /// \param __a
836 /// A 128-bit vector of [4 x float].
837 /// \param __c
838 /// A 128-bit integer vector operand specifying how the values are to be
839 /// copied.
840 /// Bits [1:0]:
841 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
842 /// returned vector.
843 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
844 /// returned vector.
845 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
846 /// returned vector.
847 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
848 /// returned vector.
849 /// Bits [33:32]:
850 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
851 /// returned vector.
852 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
853 /// returned vector.
854 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
855 /// returned vector.
856 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
857 /// returned vector.
858 /// Bits [65:64]:
859 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
860 /// returned vector.
861 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
862 /// returned vector.
863 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
864 /// returned vector.
865 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
866 /// returned vector.
867 /// Bits [97:96]:
868 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
869 /// returned vector.
870 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
871 /// returned vector.
872 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
873 /// returned vector.
874 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
875 /// returned vector.
876 /// \returns A 128-bit vector of [4 x float] containing the copied values.
877 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_permutevar_ps(__m128 __a,__m128i __c)878 _mm_permutevar_ps(__m128 __a, __m128i __c)
879 {
880 return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
881 }
882
883 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
884 /// specified by the 256-bit integer vector operand.
885 ///
886 /// \headerfile <x86intrin.h>
887 ///
888 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
889 ///
890 /// \param __a
891 /// A 256-bit vector of [8 x float].
892 /// \param __c
893 /// A 256-bit integer vector operand specifying how the values are to be
894 /// copied.
895 /// Bits [1:0]:
896 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
897 /// returned vector.
898 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
899 /// returned vector.
900 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
901 /// returned vector.
902 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
903 /// returned vector.
904 /// Bits [33:32]:
905 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
906 /// returned vector.
907 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
908 /// returned vector.
909 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
910 /// returned vector.
911 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
912 /// returned vector.
913 /// Bits [65:64]:
914 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
915 /// returned vector.
916 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
917 /// returned vector.
918 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
919 /// returned vector.
920 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
921 /// returned vector.
922 /// Bits [97:96]:
923 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
924 /// returned vector.
925 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
926 /// returned vector.
927 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
928 /// returned vector.
929 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
930 /// returned vector.
931 /// Bits [129:128]:
932 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
933 /// returned vector.
934 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
935 /// returned vector.
936 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
937 /// returned vector.
938 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
939 /// returned vector.
940 /// Bits [161:160]:
941 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
942 /// returned vector.
943 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
944 /// returned vector.
945 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
946 /// returned vector.
947 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
948 /// returned vector.
949 /// Bits [193:192]:
950 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
951 /// returned vector.
952 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
953 /// returned vector.
954 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
955 /// returned vector.
956 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
957 /// returned vector.
958 /// Bits [225:224]:
959 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
960 /// returned vector.
961 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
962 /// returned vector.
963 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
964 /// returned vector.
965 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
966 /// returned vector.
967 /// \returns A 256-bit vector of [8 x float] containing the copied values.
968 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a,__m256i __c)969 _mm256_permutevar_ps(__m256 __a, __m256i __c)
970 {
971 return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
972 }
973
974 /// \brief Copies the values in a 128-bit vector of [2 x double] as
975 /// specified by the immediate integer operand.
976 ///
977 /// \headerfile <x86intrin.h>
978 ///
979 /// \code
980 /// __m128d _mm_permute_pd(__m128d A, const int C);
981 /// \endcode
982 ///
983 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
984 ///
985 /// \param A
986 /// A 128-bit vector of [2 x double].
987 /// \param C
988 /// An immediate integer operand specifying how the values are to be copied.
989 /// Bit [0]:
990 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
991 /// returned vector.
992 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
993 /// returned vector.
994 /// Bit [1]:
995 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
996 /// returned vector.
997 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
998 /// returned vector.
999 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1000 #define _mm_permute_pd(A, C) __extension__ ({ \
1001 (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
1002 (__v2df)_mm_undefined_pd(), \
1003 ((C) >> 0) & 0x1, ((C) >> 1) & 0x1); })
1004
1005 /// \brief Copies the values in a 256-bit vector of [4 x double] as
1006 /// specified by the immediate integer operand.
1007 ///
1008 /// \headerfile <x86intrin.h>
1009 ///
1010 /// \code
1011 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1012 /// \endcode
1013 ///
1014 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
1015 ///
1016 /// \param A
1017 /// A 256-bit vector of [4 x double].
1018 /// \param C
1019 /// An immediate integer operand specifying how the values are to be copied.
1020 /// Bit [0]:
1021 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
1022 /// returned vector.
1023 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1024 /// returned vector.
1025 /// Bit [1]:
1026 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1027 /// returned vector.
1028 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1029 /// returned vector.
1030 /// Bit [2]:
1031 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1032 /// returned vector.
1033 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1034 /// returned vector.
1035 /// Bit [3]:
1036 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1037 /// returned vector.
1038 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1039 /// returned vector.
1040 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1041 #define _mm256_permute_pd(A, C) __extension__ ({ \
1042 (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
1043 (__v4df)_mm256_undefined_pd(), \
1044 0 + (((C) >> 0) & 0x1), \
1045 0 + (((C) >> 1) & 0x1), \
1046 2 + (((C) >> 2) & 0x1), \
1047 2 + (((C) >> 3) & 0x1)); })
1048
1049 /// \brief Copies the values in a 128-bit vector of [4 x float] as
1050 /// specified by the immediate integer operand.
1051 ///
1052 /// \headerfile <x86intrin.h>
1053 ///
1054 /// \code
1055 /// __m128 _mm_permute_ps(__m128 A, const int C);
1056 /// \endcode
1057 ///
1058 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1059 ///
1060 /// \param A
1061 /// A 128-bit vector of [4 x float].
1062 /// \param C
1063 /// An immediate integer operand specifying how the values are to be copied.
1064 /// Bits [1:0]:
1065 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1066 /// returned vector.
1067 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1068 /// returned vector.
1069 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1070 /// returned vector.
1071 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1072 /// returned vector.
1073 /// Bits [3:2]:
1074 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1075 /// returned vector.
1076 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1077 /// returned vector.
1078 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1079 /// returned vector.
1080 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1081 /// returned vector.
1082 /// Bits [5:4]:
1083 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1084 /// returned vector.
1085 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1086 /// returned vector.
1087 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1088 /// returned vector.
1089 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1090 /// returned vector.
1091 /// Bits [7:6]:
1092 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1093 /// returned vector.
1094 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1095 /// returned vector.
1096 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1097 /// returned vector.
1098 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1099 /// returned vector.
1100 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1101 #define _mm_permute_ps(A, C) __extension__ ({ \
1102 (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
1103 (__v4sf)_mm_undefined_ps(), \
1104 ((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \
1105 ((C) >> 4) & 0x3, ((C) >> 6) & 0x3); })
1106
1107 /// \brief Copies the values in a 256-bit vector of [8 x float] as
1108 /// specified by the immediate integer operand.
1109 ///
1110 /// \headerfile <x86intrin.h>
1111 ///
1112 /// \code
1113 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1114 /// \endcode
1115 ///
1116 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1117 ///
1118 /// \param A
1119 /// A 256-bit vector of [8 x float].
1120 /// \param C
1121 /// An immediate integer operand specifying how the values are to be copied.
1122 /// Bits [1:0]:
1123 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1124 /// returned vector.
1125 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1126 /// returned vector.
1127 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1128 /// returned vector.
1129 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1130 /// returned vector.
1131 /// Bits [3:2]:
1132 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1133 /// returned vector.
1134 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1135 /// returned vector.
1136 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1137 /// returned vector.
1138 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1139 /// returned vector.
1140 /// Bits [5:4]:
1141 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1142 /// returned vector.
1143 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1144 /// returned vector.
1145 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1146 /// returned vector.
1147 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1148 /// returned vector.
1149 /// Bits [7:6]:
1150 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1151 /// returned vector.
1152 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1153 /// returned vector.
1154 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1155 /// returned vector.
1156 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1157 /// returned vector.
1158 /// Bits [1:0]:
1159 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1160 /// returned vector.
1161 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1162 /// returned vector.
1163 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1164 /// returned vector.
1165 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1166 /// returned vector.
1167 /// Bits [3:2]:
1168 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1169 /// returned vector.
1170 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1171 /// returned vector.
1172 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1173 /// returned vector.
1174 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1175 /// returned vector.
1176 /// Bits [5:4]:
1177 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1178 /// returned vector.
1179 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1180 /// returned vector.
1181 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1182 /// returned vector.
1183 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1184 /// returned vector.
1185 /// Bits [7:6]:
1186 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1187 /// returned vector.
1188 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1189 /// returned vector.
1190 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1191 /// returned vector.
1192 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1193 /// returned vector.
1194 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1195 #define _mm256_permute_ps(A, C) __extension__ ({ \
1196 (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
1197 (__v8sf)_mm256_undefined_ps(), \
1198 0 + (((C) >> 0) & 0x3), \
1199 0 + (((C) >> 2) & 0x3), \
1200 0 + (((C) >> 4) & 0x3), \
1201 0 + (((C) >> 6) & 0x3), \
1202 4 + (((C) >> 0) & 0x3), \
1203 4 + (((C) >> 2) & 0x3), \
1204 4 + (((C) >> 4) & 0x3), \
1205 4 + (((C) >> 6) & 0x3)); })
1206
1207 /// \brief Permutes 128-bit data values stored in two 256-bit vectors of
1208 /// [4 x double], as specified by the immediate integer operand.
1209 ///
1210 /// \headerfile <x86intrin.h>
1211 ///
1212 /// \code
1213 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1214 /// \endcode
1215 ///
1216 /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1217 ///
1218 /// \param V1
1219 /// A 256-bit vector of [4 x double].
1220 /// \param V2
1221 /// A 256-bit vector of [4 x double.
1222 /// \param M
1223 /// An immediate integer operand specifying how the values are to be
1224 /// permuted.
1225 /// Bits [1:0]:
1226 /// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1227 /// destination.
1228 /// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1229 /// destination.
1230 /// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1231 /// destination.
1232 /// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1233 /// destination.
1234 /// Bits [5:4]:
1235 /// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1236 /// destination.
1237 /// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1238 /// destination.
1239 /// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1240 /// destination.
1241 /// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1242 /// destination.
1243 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1244 #define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
1245 (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1246 (__v4df)(__m256d)(V2), (M)); })
1247
1248 /// \brief Permutes 128-bit data values stored in two 256-bit vectors of
1249 /// [8 x float], as specified by the immediate integer operand.
1250 ///
1251 /// \headerfile <x86intrin.h>
1252 ///
1253 /// \code
1254 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1255 /// \endcode
1256 ///
1257 /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1258 ///
1259 /// \param V1
1260 /// A 256-bit vector of [8 x float].
1261 /// \param V2
1262 /// A 256-bit vector of [8 x float].
1263 /// \param M
1264 /// An immediate integer operand specifying how the values are to be
1265 /// permuted.
1266 /// Bits [1:0]:
1267 /// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1268 /// destination.
1269 /// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1270 /// destination.
1271 /// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1272 /// destination.
1273 /// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1274 /// destination.
1275 /// Bits [5:4]:
1276 /// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1277 /// destination.
1278 /// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1279 /// destination.
1280 /// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1281 /// destination.
1282 /// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1283 /// destination.
1284 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1285 #define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
1286 (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1287 (__v8sf)(__m256)(V2), (M)); })
1288
1289 /// \brief Permutes 128-bit data values stored in two 256-bit integer vectors,
1290 /// as specified by the immediate integer operand.
1291 ///
1292 /// \headerfile <x86intrin.h>
1293 ///
1294 /// \code
1295 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1296 /// \endcode
1297 ///
1298 /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1299 ///
1300 /// \param V1
1301 /// A 256-bit integer vector.
1302 /// \param V2
1303 /// A 256-bit integer vector.
1304 /// \param M
1305 /// An immediate integer operand specifying how the values are to be copied.
1306 /// Bits [1:0]:
1307 /// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1308 /// destination.
1309 /// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1310 /// destination.
1311 /// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1312 /// destination.
1313 /// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1314 /// destination.
1315 /// Bits [5:4]:
1316 /// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1317 /// destination.
1318 /// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1319 /// destination.
1320 /// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1321 /// destination.
1322 /// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1323 /// destination.
1324 /// \returns A 256-bit integer vector containing the copied values.
1325 #define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
1326 (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1327 (__v8si)(__m256i)(V2), (M)); })
1328
1329 /* Vector Blend */
1330 /// \brief Merges 64-bit double-precision data values stored in either of the
1331 /// two 256-bit vectors of [4 x double], as specified by the immediate
1332 /// integer operand.
1333 ///
1334 /// \headerfile <x86intrin.h>
1335 ///
1336 /// \code
1337 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1338 /// \endcode
1339 ///
1340 /// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction.
1341 ///
1342 /// \param V1
1343 /// A 256-bit vector of [4 x double].
1344 /// \param V2
1345 /// A 256-bit vector of [4 x double].
1346 /// \param M
1347 /// An immediate integer operand, with mask bits [3:0] specifying how the
1348 /// values are to be copied. The position of the mask bit corresponds to the
1349 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
1350 /// element in operand V1 is copied to the same position in the destination.
1351 /// When a mask bit is 1, the corresponding 64-bit element in operand V2 is
1352 /// copied to the same position in the destination.
1353 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1354 #define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
1355 (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
1356 (__v4df)(__m256d)(V2), \
1357 (((M) & 0x01) ? 4 : 0), \
1358 (((M) & 0x02) ? 5 : 1), \
1359 (((M) & 0x04) ? 6 : 2), \
1360 (((M) & 0x08) ? 7 : 3)); })
1361
1362 /// \brief Merges 32-bit single-precision data values stored in either of the
1363 /// two 256-bit vectors of [8 x float], as specified by the immediate
1364 /// integer operand.
1365 ///
1366 /// \headerfile <x86intrin.h>
1367 ///
1368 /// \code
1369 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1370 /// \endcode
1371 ///
1372 /// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction.
1373 ///
1374 /// \param V1
1375 /// A 256-bit vector of [8 x float].
1376 /// \param V2
1377 /// A 256-bit vector of [8 x float].
1378 /// \param M
1379 /// An immediate integer operand, with mask bits [7:0] specifying how the
1380 /// values are to be copied. The position of the mask bit corresponds to the
1381 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
1382 /// element in operand V1 is copied to the same position in the destination.
1383 /// When a mask bit is 1, the corresponding 32-bit element in operand V2 is
1384 /// copied to the same position in the destination.
1385 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1386 #define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
1387 (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
1388 (__v8sf)(__m256)(V2), \
1389 (((M) & 0x01) ? 8 : 0), \
1390 (((M) & 0x02) ? 9 : 1), \
1391 (((M) & 0x04) ? 10 : 2), \
1392 (((M) & 0x08) ? 11 : 3), \
1393 (((M) & 0x10) ? 12 : 4), \
1394 (((M) & 0x20) ? 13 : 5), \
1395 (((M) & 0x40) ? 14 : 6), \
1396 (((M) & 0x80) ? 15 : 7)); })
1397
1398 /// \brief Merges 64-bit double-precision data values stored in either of the
1399 /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1400 /// operand.
1401 ///
1402 /// \headerfile <x86intrin.h>
1403 ///
1404 /// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction.
1405 ///
1406 /// \param __a
1407 /// A 256-bit vector of [4 x double].
1408 /// \param __b
1409 /// A 256-bit vector of [4 x double].
1410 /// \param __c
1411 /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1412 /// how the values are to be copied. The position of the mask bit corresponds
1413 /// to the most significant bit of a copied value. When a mask bit is 0, the
1414 /// corresponding 64-bit element in operand __a is copied to the same
1415 /// position in the destination. When a mask bit is 1, the corresponding
1416 /// 64-bit element in operand __b is copied to the same position in the
1417 /// destination.
1418 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1419 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a,__m256d __b,__m256d __c)1420 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1421 {
1422 return (__m256d)__builtin_ia32_blendvpd256(
1423 (__v4df)__a, (__v4df)__b, (__v4df)__c);
1424 }
1425
1426 /// \brief Merges 32-bit single-precision data values stored in either of the
1427 /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1428 /// operand.
1429 ///
1430 /// \headerfile <x86intrin.h>
1431 ///
1432 /// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction.
1433 ///
1434 /// \param __a
1435 /// A 256-bit vector of [8 x float].
1436 /// \param __b
1437 /// A 256-bit vector of [8 x float].
1438 /// \param __c
1439 /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1440 /// and 31 specifying how the values are to be copied. The position of the
1441 /// mask bit corresponds to the most significant bit of a copied value. When
1442 /// a mask bit is 0, the corresponding 32-bit element in operand __a is
1443 /// copied to the same position in the destination. When a mask bit is 1, the
1444 /// corresponding 32-bit element in operand __b is copied to the same
1445 /// position in the destination.
1446 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1447 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a,__m256 __b,__m256 __c)1448 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1449 {
1450 return (__m256)__builtin_ia32_blendvps256(
1451 (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1452 }
1453
1454 /* Vector Dot Product */
1455 /// \brief Computes two dot products in parallel, using the lower and upper
1456 /// halves of two [8 x float] vectors as input to the two computations, and
1457 /// returning the two dot products in the lower and upper halves of the
1458 /// [8 x float] result. The immediate integer operand controls which
1459 /// input elements will contribute to the dot product, and where the final
1460 /// results are returned. In general, for each dot product, the four
1461 /// corresponding elements of the input vectors are multiplied; the first
1462 /// two and second two products are summed, then the two sums are added to
1463 /// form the final result.
1464 ///
1465 /// \headerfile <x86intrin.h>
1466 ///
1467 /// \code
1468 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1469 /// \endcode
1470 ///
1471 /// This intrinsic corresponds to the \c VDPPS / DPPS instruction.
1472 ///
1473 /// \param V1
1474 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1475 /// \param V2
1476 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1477 /// \param M
1478 /// An immediate integer argument. Bits [7:4] determine which elements of
1479 /// the input vectors are used, with bit [4] corresponding to the lowest
1480 /// element and bit [7] corresponding to the highest element of each [4 x
1481 /// float] subvector. If a bit is set, the corresponding elements from the
1482 /// two input vectors are used as an input for dot product; otherwise that
1483 /// input is treated as zero. Bits [3:0] determine which elements of the
1484 /// result will receive a copy of the final dot product, with bit [0]
1485 /// corresponding to the lowest element and bit [3] corresponding to the
1486 /// highest element of each [4 x float] subvector. If a bit is set, the dot
1487 /// product is returned in the corresponding element; otherwise that element
1488 /// is set to zero. The bitmask is applied in the same way to each of the
1489 /// two parallel dot product computations.
1490 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1491 #define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
1492 (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1493 (__v8sf)(__m256)(V2), (M)); })
1494
1495 /* Vector shuffle */
1496 /// \brief Selects 8 float values from the 256-bit operands of [8 x float], as
1497 /// specified by the immediate value operand. The four selected elements in
1498 /// each operand are copied to the destination according to the bits
1499 /// specified in the immediate operand. The selected elements from the first
1500 /// 256-bit operand are copied to bits [63:0] and bits [191:128] of the
1501 /// destination, and the selected elements from the second 256-bit operand
1502 /// are copied to bits [127:64] and bits [255:192] of the destination. For
1503 /// example, if bits [7:0] of the immediate operand contain a value of 0xFF,
1504 /// the 256-bit destination vector would contain the following values: b[7],
1505 /// b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1506 ///
1507 /// \headerfile <x86intrin.h>
1508 ///
1509 /// \code
1510 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1511 /// \endcode
1512 ///
1513 /// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction.
1514 ///
1515 /// \param a
1516 /// A 256-bit vector of [8 x float]. The four selected elements in this
1517 /// operand are copied to bits [63:0] and bits [191:128] in the destination,
1518 /// according to the bits specified in the immediate operand.
1519 /// \param b
1520 /// A 256-bit vector of [8 x float]. The four selected elements in this
1521 /// operand are copied to bits [127:64] and bits [255:192] in the
1522 /// destination, according to the bits specified in the immediate operand.
1523 /// \param mask
1524 /// An immediate value containing an 8-bit value specifying which elements to
1525 /// copy from a and b. Bits [3:0] specify the values copied from operand a.
1526 /// Bits [7:4] specify the values copied from operand b.
1527 /// The destinations within the 256-bit destination are assigned values as
1528 /// follows, according to the bit value assignments described below:
1529 /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1530 /// destination.
1531 /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1532 /// destination.
1533 /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1534 /// destination.
1535 /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1536 /// the destination.
1537 /// Bit value assignments:
1538 /// 00: Bits [31:0] and [159:128] are copied from the selected operand.
1539 /// 01: Bits [63:32] and [191:160] are copied from the selected operand.
1540 /// 10: Bits [95:64] and [223:192] are copied from the selected operand.
1541 /// 11: Bits [127:96] and [255:224] are copied from the selected operand.
1542 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1543 #define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
1544 (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
1545 (__v8sf)(__m256)(b), \
1546 0 + (((mask) >> 0) & 0x3), \
1547 0 + (((mask) >> 2) & 0x3), \
1548 8 + (((mask) >> 4) & 0x3), \
1549 8 + (((mask) >> 6) & 0x3), \
1550 4 + (((mask) >> 0) & 0x3), \
1551 4 + (((mask) >> 2) & 0x3), \
1552 12 + (((mask) >> 4) & 0x3), \
1553 12 + (((mask) >> 6) & 0x3)); })
1554
1555 /// \brief Selects four double-precision values from the 256-bit operands of
1556 /// [4 x double], as specified by the immediate value operand. The selected
1557 /// elements from the first 256-bit operand are copied to bits [63:0] and
1558 /// bits [191:128] in the destination, and the selected elements from the
1559 /// second 256-bit operand are copied to bits [127:64] and bits [255:192] in
1560 /// the destination. For example, if bits [3:0] of the immediate operand
1561 /// contain a value of 0xF, the 256-bit destination vector would contain the
1562 /// following values: b[3], a[3], b[1], a[1].
1563 ///
1564 /// \headerfile <x86intrin.h>
1565 ///
1566 /// \code
1567 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1568 /// \endcode
1569 ///
1570 /// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction.
1571 ///
1572 /// \param a
1573 /// A 256-bit vector of [4 x double].
1574 /// \param b
1575 /// A 256-bit vector of [4 x double].
1576 /// \param mask
1577 /// An immediate value containing 8-bit values specifying which elements to
1578 /// copy from a and b:
1579 /// Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the
1580 /// destination.
1581 /// Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the
1582 /// destination.
1583 /// Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the
1584 /// destination.
1585 /// Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the
1586 /// destination.
1587 /// Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the
1588 /// destination.
1589 /// Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the
1590 /// destination.
1591 /// Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the
1592 /// destination.
1593 /// Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the
1594 /// destination.
1595 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1596 #define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
1597 (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
1598 (__v4df)(__m256d)(b), \
1599 0 + (((mask) >> 0) & 0x1), \
1600 4 + (((mask) >> 1) & 0x1), \
1601 2 + (((mask) >> 2) & 0x1), \
1602 6 + (((mask) >> 3) & 0x1)); })
1603
1604 /* Compare */
1605 #define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
1606 #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
1607 #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
1608 #define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
1609 #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
1610 #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
1611 #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
1612 #define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */
1613 #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1614 #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unord, signaling) */
1615 #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1616 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1617 #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1618 #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1619 #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1620 #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1621 #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1622 #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1623 #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1624 #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1625 #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1626 #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1627 #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unord, non-signaling) */
1628 #define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1629 #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1630 #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unord, non-sign) */
1631 #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1632 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1633 #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1634 #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1635 #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1636 #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1637
1638 /// \brief Compares each of the corresponding double-precision values of two
1639 /// 128-bit vectors of [2 x double], using the operation specified by the
1640 /// immediate integer operand. Returns a [2 x double] vector consisting of
1641 /// two doubles corresponding to the two comparison results: zero if the
1642 /// comparison is false, and all 1's if the comparison is true.
1643 ///
1644 /// \headerfile <x86intrin.h>
1645 ///
1646 /// \code
1647 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1648 /// \endcode
1649 ///
1650 /// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
1651 ///
1652 /// \param a
1653 /// A 128-bit vector of [2 x double].
1654 /// \param b
1655 /// A 128-bit vector of [2 x double].
1656 /// \param c
1657 /// An immediate integer operand, with bits [4:0] specifying which comparison
1658 /// operation to use:
1659 /// 00h, 08h, 10h, 18h: Equal
1660 /// 01h, 09h, 11h, 19h: Less than
1661 /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1662 /// operands)
1663 /// 03h, 0Bh, 13h, 1Bh: Unordered
1664 /// 04h, 0Ch, 14h, 1Ch: Not equal
1665 /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1666 /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1667 /// (swapped operands)
1668 /// 07h, 0Fh, 17h, 1Fh: Ordered
1669 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1670 #define _mm_cmp_pd(a, b, c) __extension__ ({ \
1671 (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1672 (__v2df)(__m128d)(b), (c)); })
1673
1674 /// \brief Compares each of the corresponding values of two 128-bit vectors of
1675 /// [4 x float], using the operation specified by the immediate integer
1676 /// operand. Returns a [4 x float] vector consisting of four floats
1677 /// corresponding to the four comparison results: zero if the comparison is
1678 /// false, and all 1's if the comparison is true.
1679 ///
1680 /// \headerfile <x86intrin.h>
1681 ///
1682 /// \code
1683 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1684 /// \endcode
1685 ///
1686 /// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
1687 ///
1688 /// \param a
1689 /// A 128-bit vector of [4 x float].
1690 /// \param b
1691 /// A 128-bit vector of [4 x float].
1692 /// \param c
1693 /// An immediate integer operand, with bits [4:0] specifying which comparison
1694 /// operation to use:
1695 /// 00h, 08h, 10h, 18h: Equal
1696 /// 01h, 09h, 11h, 19h: Less than
1697 /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1698 /// operands)
1699 /// 03h, 0Bh, 13h, 1Bh: Unordered
1700 /// 04h, 0Ch, 14h, 1Ch: Not equal
1701 /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1702 /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1703 /// (swapped operands)
1704 /// 07h, 0Fh, 17h, 1Fh: Ordered
1705 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1706 #define _mm_cmp_ps(a, b, c) __extension__ ({ \
1707 (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1708 (__v4sf)(__m128)(b), (c)); })
1709
1710 /// \brief Compares each of the corresponding double-precision values of two
1711 /// 256-bit vectors of [4 x double], using the operation specified by the
1712 /// immediate integer operand. Returns a [4 x double] vector consisting of
1713 /// four doubles corresponding to the four comparison results: zero if the
1714 /// comparison is false, and all 1's if the comparison is true.
1715 ///
1716 /// \headerfile <x86intrin.h>
1717 ///
1718 /// \code
1719 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1720 /// \endcode
1721 ///
1722 /// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
1723 ///
1724 /// \param a
1725 /// A 256-bit vector of [4 x double].
1726 /// \param b
1727 /// A 256-bit vector of [4 x double].
1728 /// \param c
1729 /// An immediate integer operand, with bits [4:0] specifying which comparison
1730 /// operation to use:
1731 /// 00h, 08h, 10h, 18h: Equal
1732 /// 01h, 09h, 11h, 19h: Less than
1733 /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1734 /// operands)
1735 /// 03h, 0Bh, 13h, 1Bh: Unordered
1736 /// 04h, 0Ch, 14h, 1Ch: Not equal
1737 /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1738 /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1739 /// (swapped operands)
1740 /// 07h, 0Fh, 17h, 1Fh: Ordered
1741 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1742 #define _mm256_cmp_pd(a, b, c) __extension__ ({ \
1743 (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1744 (__v4df)(__m256d)(b), (c)); })
1745
1746 /// \brief Compares each of the corresponding values of two 256-bit vectors of
1747 /// [8 x float], using the operation specified by the immediate integer
1748 /// operand. Returns a [8 x float] vector consisting of eight floats
1749 /// corresponding to the eight comparison results: zero if the comparison is
1750 /// false, and all 1's if the comparison is true.
1751 ///
1752 /// \headerfile <x86intrin.h>
1753 ///
1754 /// \code
1755 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1756 /// \endcode
1757 ///
1758 /// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
1759 ///
1760 /// \param a
1761 /// A 256-bit vector of [8 x float].
1762 /// \param b
1763 /// A 256-bit vector of [8 x float].
1764 /// \param c
1765 /// An immediate integer operand, with bits [4:0] specifying which comparison
1766 /// operation to use:
1767 /// 00h, 08h, 10h, 18h: Equal
1768 /// 01h, 09h, 11h, 19h: Less than
1769 /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1770 /// operands)
1771 /// 03h, 0Bh, 13h, 1Bh: Unordered
1772 /// 04h, 0Ch, 14h, 1Ch: Not equal
1773 /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1774 /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1775 /// (swapped operands)
1776 /// 07h, 0Fh, 17h, 1Fh: Ordered
1777 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1778 #define _mm256_cmp_ps(a, b, c) __extension__ ({ \
1779 (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1780 (__v8sf)(__m256)(b), (c)); })
1781
1782 /// \brief Compares each of the corresponding scalar double-precision values of
1783 /// two 128-bit vectors of [2 x double], using the operation specified by the
1784 /// immediate integer operand. If the result is true, all 64 bits of the
1785 /// destination vector are set; otherwise they are cleared.
1786 ///
1787 /// \headerfile <x86intrin.h>
1788 ///
1789 /// \code
1790 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1791 /// \endcode
1792 ///
1793 /// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction.
1794 ///
1795 /// \param a
1796 /// A 128-bit vector of [2 x double].
1797 /// \param b
1798 /// A 128-bit vector of [2 x double].
1799 /// \param c
1800 /// An immediate integer operand, with bits [4:0] specifying which comparison
1801 /// operation to use:
1802 /// 00h, 08h, 10h, 18h: Equal
1803 /// 01h, 09h, 11h, 19h: Less than
1804 /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1805 /// operands)
1806 /// 03h, 0Bh, 13h, 1Bh: Unordered
1807 /// 04h, 0Ch, 14h, 1Ch: Not equal
1808 /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1809 /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1810 /// (swapped operands)
1811 /// 07h, 0Fh, 17h, 1Fh: Ordered
1812 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1813 #define _mm_cmp_sd(a, b, c) __extension__ ({ \
1814 (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1815 (__v2df)(__m128d)(b), (c)); })
1816
1817 /// \brief Compares each of the corresponding scalar values of two 128-bit
1818 /// vectors of [4 x float], using the operation specified by the immediate
1819 /// integer operand. If the result is true, all 32 bits of the destination
1820 /// vector are set; otherwise they are cleared.
1821 ///
1822 /// \headerfile <x86intrin.h>
1823 ///
1824 /// \code
1825 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1826 /// \endcode
1827 ///
1828 /// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction.
1829 ///
1830 /// \param a
1831 /// A 128-bit vector of [4 x float].
1832 /// \param b
1833 /// A 128-bit vector of [4 x float].
1834 /// \param c
1835 /// An immediate integer operand, with bits [4:0] specifying which comparison
1836 /// operation to use:
1837 /// 00h, 08h, 10h, 18h: Equal
1838 /// 01h, 09h, 11h, 19h: Less than
1839 /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1840 /// operands)
1841 /// 03h, 0Bh, 13h, 1Bh: Unordered
1842 /// 04h, 0Ch, 14h, 1Ch: Not equal
1843 /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1844 /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1845 /// (swapped operands)
1846 /// 07h, 0Fh, 17h, 1Fh: Ordered
1847 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1848 #define _mm_cmp_ss(a, b, c) __extension__ ({ \
1849 (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1850 (__v4sf)(__m128)(b), (c)); })
1851
1852 /// \brief Takes a [8 x i32] vector and returns the vector element value
1853 /// indexed by the immediate constant operand.
1854 ///
1855 /// \headerfile <x86intrin.h>
1856 ///
1857 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1858 /// EXTRACTF128+COMPOSITE instruction.
1859 ///
1860 /// \param __a
1861 /// A 256-bit vector of [8 x i32].
1862 /// \param __imm
1863 /// An immediate integer operand with bits [2:0] determining which vector
1864 /// element is extracted and returned.
1865 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1866 /// packed data.
1867 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi32(__m256i __a,const int __imm)1868 _mm256_extract_epi32(__m256i __a, const int __imm)
1869 {
1870 __v8si __b = (__v8si)__a;
1871 return __b[__imm & 7];
1872 }
1873
1874 /// \brief Takes a [16 x i16] vector and returns the vector element value
1875 /// indexed by the immediate constant operand.
1876 ///
1877 /// \headerfile <x86intrin.h>
1878 ///
1879 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1880 /// EXTRACTF128+COMPOSITE instruction.
1881 ///
1882 /// \param __a
1883 /// A 256-bit integer vector of [16 x i16].
1884 /// \param __imm
1885 /// An immediate integer operand with bits [3:0] determining which vector
1886 /// element is extracted and returned.
1887 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
1888 /// packed data.
1889 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi16(__m256i __a,const int __imm)1890 _mm256_extract_epi16(__m256i __a, const int __imm)
1891 {
1892 __v16hi __b = (__v16hi)__a;
1893 return (unsigned short)__b[__imm & 15];
1894 }
1895
1896 /// \brief Takes a [32 x i8] vector and returns the vector element value
1897 /// indexed by the immediate constant operand.
1898 ///
1899 /// \headerfile <x86intrin.h>
1900 ///
1901 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1902 /// EXTRACTF128+COMPOSITE instruction.
1903 ///
1904 /// \param __a
1905 /// A 256-bit integer vector of [32 x i8].
1906 /// \param __imm
1907 /// An immediate integer operand with bits [4:0] determining which vector
1908 /// element is extracted and returned.
1909 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
1910 /// packed data.
1911 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi8(__m256i __a,const int __imm)1912 _mm256_extract_epi8(__m256i __a, const int __imm)
1913 {
1914 __v32qi __b = (__v32qi)__a;
1915 return (unsigned char)__b[__imm & 31];
1916 }
1917
1918 #ifdef __x86_64__
1919 /// \brief Takes a [4 x i64] vector and returns the vector element value
1920 /// indexed by the immediate constant operand.
1921 ///
1922 /// \headerfile <x86intrin.h>
1923 ///
1924 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1925 /// EXTRACTF128+COMPOSITE instruction.
1926 ///
1927 /// \param __a
1928 /// A 256-bit integer vector of [4 x i64].
1929 /// \param __imm
1930 /// An immediate integer operand with bits [1:0] determining which vector
1931 /// element is extracted and returned.
1932 /// \returns A 64-bit integer containing the extracted 64 bits of extended
1933 /// packed data.
1934 static __inline long long __DEFAULT_FN_ATTRS
_mm256_extract_epi64(__m256i __a,const int __imm)1935 _mm256_extract_epi64(__m256i __a, const int __imm)
1936 {
1937 __v4di __b = (__v4di)__a;
1938 return __b[__imm & 3];
1939 }
1940 #endif
1941
1942 /// \brief Takes a [8 x i32] vector and replaces the vector element value
1943 /// indexed by the immediate constant operand by a new value. Returns the
1944 /// modified vector.
1945 ///
1946 /// \headerfile <x86intrin.h>
1947 ///
1948 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
1949 /// INSERTF128+COMPOSITE instruction.
1950 ///
1951 /// \param __a
1952 /// A vector of [8 x i32] to be used by the insert operation.
1953 /// \param __b
1954 /// An integer value. The replacement value for the insert operation.
1955 /// \param __imm
1956 /// An immediate integer specifying the index of the vector element to be
1957 /// replaced.
1958 /// \returns A copy of vector __a, after replacing its element indexed by __imm
1959 /// with __b.
1960 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi32(__m256i __a,int __b,int const __imm)1961 _mm256_insert_epi32(__m256i __a, int __b, int const __imm)
1962 {
1963 __v8si __c = (__v8si)__a;
1964 __c[__imm & 7] = __b;
1965 return (__m256i)__c;
1966 }
1967
1968
1969 /// \brief Takes a [16 x i16] vector and replaces the vector element value
1970 /// indexed by the immediate constant operand with a new value. Returns the
1971 /// modified vector.
1972 ///
1973 /// \headerfile <x86intrin.h>
1974 ///
1975 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
1976 /// INSERTF128+COMPOSITE instruction.
1977 ///
1978 /// \param __a
1979 /// A vector of [16 x i16] to be used by the insert operation.
1980 /// \param __b
1981 /// An i16 integer value. The replacement value for the insert operation.
1982 /// \param __imm
1983 /// An immediate integer specifying the index of the vector element to be
1984 /// replaced.
1985 /// \returns A copy of vector __a, after replacing its element indexed by __imm
1986 /// with __b.
1987 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi16(__m256i __a,int __b,int const __imm)1988 _mm256_insert_epi16(__m256i __a, int __b, int const __imm)
1989 {
1990 __v16hi __c = (__v16hi)__a;
1991 __c[__imm & 15] = __b;
1992 return (__m256i)__c;
1993 }
1994
1995 /// \brief Takes a [32 x i8] vector and replaces the vector element value
1996 /// indexed by the immediate constant operand with a new value. Returns the
1997 /// modified vector.
1998 ///
1999 /// \headerfile <x86intrin.h>
2000 ///
2001 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
2002 /// INSERTF128+COMPOSITE instruction.
2003 ///
2004 /// \param __a
2005 /// A vector of [32 x i8] to be used by the insert operation.
2006 /// \param __b
2007 /// An i8 integer value. The replacement value for the insert operation.
2008 /// \param __imm
2009 /// An immediate integer specifying the index of the vector element to be
2010 /// replaced.
2011 /// \returns A copy of vector __a, after replacing its element indexed by __imm
2012 /// with __b.
2013 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi8(__m256i __a,int __b,int const __imm)2014 _mm256_insert_epi8(__m256i __a, int __b, int const __imm)
2015 {
2016 __v32qi __c = (__v32qi)__a;
2017 __c[__imm & 31] = __b;
2018 return (__m256i)__c;
2019 }
2020
2021 #ifdef __x86_64__
2022 /// \brief Takes a [4 x i64] vector and replaces the vector element value
2023 /// indexed by the immediate constant operand with a new value. Returns the
2024 /// modified vector.
2025 ///
2026 /// \headerfile <x86intrin.h>
2027 ///
2028 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
2029 /// INSERTF128+COMPOSITE instruction.
2030 ///
2031 /// \param __a
2032 /// A vector of [4 x i64] to be used by the insert operation.
2033 /// \param __b
2034 /// A 64-bit integer value. The replacement value for the insert operation.
2035 /// \param __imm
2036 /// An immediate integer specifying the index of the vector element to be
2037 /// replaced.
2038 /// \returns A copy of vector __a, after replacing its element indexed by __imm
2039 /// with __b.
2040 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi64(__m256i __a,long long __b,int const __imm)2041 _mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
2042 {
2043 __v4di __c = (__v4di)__a;
2044 __c[__imm & 3] = __b;
2045 return (__m256i)__c;
2046 }
2047 #endif
2048
2049 /* Conversion */
2050 /// \brief Converts a vector of [4 x i32] into a vector of [4 x double].
2051 ///
2052 /// \headerfile <x86intrin.h>
2053 ///
2054 /// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction.
2055 ///
2056 /// \param __a
2057 /// A 128-bit integer vector of [4 x i32].
2058 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2059 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)2060 _mm256_cvtepi32_pd(__m128i __a)
2061 {
2062 return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2063 }
2064
2065 /// \brief Converts a vector of [8 x i32] into a vector of [8 x float].
2066 ///
2067 /// \headerfile <x86intrin.h>
2068 ///
2069 /// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction.
2070 ///
2071 /// \param __a
2072 /// A 256-bit integer vector.
2073 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2074 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)2075 _mm256_cvtepi32_ps(__m256i __a)
2076 {
2077 return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
2078 }
2079
2080 /// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2081 /// [4 x float].
2082 ///
2083 /// \headerfile <x86intrin.h>
2084 ///
2085 /// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction.
2086 ///
2087 /// \param __a
2088 /// A 256-bit vector of [4 x double].
2089 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2090 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)2091 _mm256_cvtpd_ps(__m256d __a)
2092 {
2093 return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2094 }
2095
2096 /// \brief Converts a vector of [8 x float] into a vector of [8 x i32].
2097 ///
2098 /// \headerfile <x86intrin.h>
2099 ///
2100 /// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction.
2101 ///
2102 /// \param __a
2103 /// A 256-bit vector of [8 x float].
2104 /// \returns A 256-bit integer vector containing the converted values.
2105 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)2106 _mm256_cvtps_epi32(__m256 __a)
2107 {
2108 return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2109 }
2110
2111 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)2112 _mm256_cvtps_pd(__m128 __a)
2113 {
2114 return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2115 }
2116
2117 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)2118 _mm256_cvttpd_epi32(__m256d __a)
2119 {
2120 return (__m128i)__builtin_convertvector((__v4df) __a, __v4si);
2121 }
2122
2123 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)2124 _mm256_cvtpd_epi32(__m256d __a)
2125 {
2126 return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2127 }
2128
2129 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)2130 _mm256_cvttps_epi32(__m256 __a)
2131 {
2132 return (__m256i)__builtin_convertvector((__v8sf) __a, __v8si);
2133 }
2134
2135 static __inline double __DEFAULT_FN_ATTRS
_mm256_cvtsd_f64(__m256d __a)2136 _mm256_cvtsd_f64(__m256d __a)
2137 {
2138 return __a[0];
2139 }
2140
2141 static __inline int __DEFAULT_FN_ATTRS
_mm256_cvtsi256_si32(__m256i __a)2142 _mm256_cvtsi256_si32(__m256i __a)
2143 {
2144 __v8si __b = (__v8si)__a;
2145 return __b[0];
2146 }
2147
2148 static __inline float __DEFAULT_FN_ATTRS
_mm256_cvtss_f32(__m256 __a)2149 _mm256_cvtss_f32(__m256 __a)
2150 {
2151 return __a[0];
2152 }
2153
2154 /* Vector replicate */
2155 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)2156 _mm256_movehdup_ps(__m256 __a)
2157 {
2158 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2159 }
2160
2161 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)2162 _mm256_moveldup_ps(__m256 __a)
2163 {
2164 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2165 }
2166
2167 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)2168 _mm256_movedup_pd(__m256d __a)
2169 {
2170 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2171 }
2172
2173 /* Unpack and Interleave */
2174 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a,__m256d __b)2175 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2176 {
2177 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2178 }
2179
2180 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a,__m256d __b)2181 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2182 {
2183 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2184 }
2185
2186 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a,__m256 __b)2187 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2188 {
2189 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2190 }
2191
2192 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a,__m256 __b)2193 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2194 {
2195 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2196 }
2197
2198 /* Bit Test */
2199 static __inline int __DEFAULT_FN_ATTRS
_mm_testz_pd(__m128d __a,__m128d __b)2200 _mm_testz_pd(__m128d __a, __m128d __b)
2201 {
2202 return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2203 }
2204
2205 static __inline int __DEFAULT_FN_ATTRS
_mm_testc_pd(__m128d __a,__m128d __b)2206 _mm_testc_pd(__m128d __a, __m128d __b)
2207 {
2208 return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2209 }
2210
2211 static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_pd(__m128d __a,__m128d __b)2212 _mm_testnzc_pd(__m128d __a, __m128d __b)
2213 {
2214 return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2215 }
2216
2217 static __inline int __DEFAULT_FN_ATTRS
_mm_testz_ps(__m128 __a,__m128 __b)2218 _mm_testz_ps(__m128 __a, __m128 __b)
2219 {
2220 return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2221 }
2222
2223 static __inline int __DEFAULT_FN_ATTRS
_mm_testc_ps(__m128 __a,__m128 __b)2224 _mm_testc_ps(__m128 __a, __m128 __b)
2225 {
2226 return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2227 }
2228
2229 static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_ps(__m128 __a,__m128 __b)2230 _mm_testnzc_ps(__m128 __a, __m128 __b)
2231 {
2232 return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2233 }
2234
2235 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a,__m256d __b)2236 _mm256_testz_pd(__m256d __a, __m256d __b)
2237 {
2238 return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2239 }
2240
2241 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a,__m256d __b)2242 _mm256_testc_pd(__m256d __a, __m256d __b)
2243 {
2244 return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2245 }
2246
2247 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a,__m256d __b)2248 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2249 {
2250 return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2251 }
2252
2253 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a,__m256 __b)2254 _mm256_testz_ps(__m256 __a, __m256 __b)
2255 {
2256 return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2257 }
2258
2259 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a,__m256 __b)2260 _mm256_testc_ps(__m256 __a, __m256 __b)
2261 {
2262 return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2263 }
2264
2265 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a,__m256 __b)2266 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2267 {
2268 return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2269 }
2270
2271 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a,__m256i __b)2272 _mm256_testz_si256(__m256i __a, __m256i __b)
2273 {
2274 return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2275 }
2276
2277 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a,__m256i __b)2278 _mm256_testc_si256(__m256i __a, __m256i __b)
2279 {
2280 return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2281 }
2282
2283 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a,__m256i __b)2284 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2285 {
2286 return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2287 }
2288
2289 /* Vector extract sign mask */
2290 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)2291 _mm256_movemask_pd(__m256d __a)
2292 {
2293 return __builtin_ia32_movmskpd256((__v4df)__a);
2294 }
2295
2296 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)2297 _mm256_movemask_ps(__m256 __a)
2298 {
2299 return __builtin_ia32_movmskps256((__v8sf)__a);
2300 }
2301
2302 /* Vector __zero */
2303 static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroall(void)2304 _mm256_zeroall(void)
2305 {
2306 __builtin_ia32_vzeroall();
2307 }
2308
2309 static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroupper(void)2310 _mm256_zeroupper(void)
2311 {
2312 __builtin_ia32_vzeroupper();
2313 }
2314
2315 /* Vector load with broadcast */
2316 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_broadcast_ss(float const * __a)2317 _mm_broadcast_ss(float const *__a)
2318 {
2319 float __f = *__a;
2320 return (__m128)(__v4sf){ __f, __f, __f, __f };
2321 }
2322
2323 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const * __a)2324 _mm256_broadcast_sd(double const *__a)
2325 {
2326 double __d = *__a;
2327 return (__m256d)(__v4df){ __d, __d, __d, __d };
2328 }
2329
2330 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const * __a)2331 _mm256_broadcast_ss(float const *__a)
2332 {
2333 float __f = *__a;
2334 return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
2335 }
2336
2337 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const * __a)2338 _mm256_broadcast_pd(__m128d const *__a)
2339 {
2340 return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a);
2341 }
2342
2343 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const * __a)2344 _mm256_broadcast_ps(__m128 const *__a)
2345 {
2346 return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a);
2347 }
2348
2349 /* SIMD load ops */
2350 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const * __p)2351 _mm256_load_pd(double const *__p)
2352 {
2353 return *(__m256d *)__p;
2354 }
2355
2356 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const * __p)2357 _mm256_load_ps(float const *__p)
2358 {
2359 return *(__m256 *)__p;
2360 }
2361
2362 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const * __p)2363 _mm256_loadu_pd(double const *__p)
2364 {
2365 struct __loadu_pd {
2366 __m256d __v;
2367 } __attribute__((__packed__, __may_alias__));
2368 return ((struct __loadu_pd*)__p)->__v;
2369 }
2370
2371 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const * __p)2372 _mm256_loadu_ps(float const *__p)
2373 {
2374 struct __loadu_ps {
2375 __m256 __v;
2376 } __attribute__((__packed__, __may_alias__));
2377 return ((struct __loadu_ps*)__p)->__v;
2378 }
2379
2380 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const * __p)2381 _mm256_load_si256(__m256i const *__p)
2382 {
2383 return *__p;
2384 }
2385
2386 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i const * __p)2387 _mm256_loadu_si256(__m256i const *__p)
2388 {
2389 struct __loadu_si256 {
2390 __m256i __v;
2391 } __attribute__((__packed__, __may_alias__));
2392 return ((struct __loadu_si256*)__p)->__v;
2393 }
2394
2395 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i const * __p)2396 _mm256_lddqu_si256(__m256i const *__p)
2397 {
2398 return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
2399 }
2400
2401 /* SIMD store ops */
2402 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double * __p,__m256d __a)2403 _mm256_store_pd(double *__p, __m256d __a)
2404 {
2405 *(__m256d *)__p = __a;
2406 }
2407
2408 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float * __p,__m256 __a)2409 _mm256_store_ps(float *__p, __m256 __a)
2410 {
2411 *(__m256 *)__p = __a;
2412 }
2413
2414 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double * __p,__m256d __a)2415 _mm256_storeu_pd(double *__p, __m256d __a)
2416 {
2417 struct __storeu_pd {
2418 __m256d __v;
2419 } __attribute__((__packed__, __may_alias__));
2420 ((struct __storeu_pd*)__p)->__v = __a;
2421 }
2422
2423 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float * __p,__m256 __a)2424 _mm256_storeu_ps(float *__p, __m256 __a)
2425 {
2426 struct __storeu_ps {
2427 __m256 __v;
2428 } __attribute__((__packed__, __may_alias__));
2429 ((struct __storeu_ps*)__p)->__v = __a;
2430 }
2431
2432 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i * __p,__m256i __a)2433 _mm256_store_si256(__m256i *__p, __m256i __a)
2434 {
2435 *__p = __a;
2436 }
2437
2438 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i * __p,__m256i __a)2439 _mm256_storeu_si256(__m256i *__p, __m256i __a)
2440 {
2441 struct __storeu_si256 {
2442 __m256i __v;
2443 } __attribute__((__packed__, __may_alias__));
2444 ((struct __storeu_si256*)__p)->__v = __a;
2445 }
2446
2447 /* Conditional load ops */
2448 static __inline __m128d __DEFAULT_FN_ATTRS
_mm_maskload_pd(double const * __p,__m128i __m)2449 _mm_maskload_pd(double const *__p, __m128i __m)
2450 {
2451 return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
2452 }
2453
2454 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const * __p,__m256i __m)2455 _mm256_maskload_pd(double const *__p, __m256i __m)
2456 {
2457 return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
2458 (__v4di)__m);
2459 }
2460
2461 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_maskload_ps(float const * __p,__m128i __m)2462 _mm_maskload_ps(float const *__p, __m128i __m)
2463 {
2464 return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
2465 }
2466
2467 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const * __p,__m256i __m)2468 _mm256_maskload_ps(float const *__p, __m256i __m)
2469 {
2470 return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
2471 }
2472
2473 /* Conditional store ops */
2474 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float * __p,__m256i __m,__m256 __a)2475 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
2476 {
2477 __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
2478 }
2479
2480 static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_pd(double * __p,__m128i __m,__m128d __a)2481 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
2482 {
2483 __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
2484 }
2485
2486 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double * __p,__m256i __m,__m256d __a)2487 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
2488 {
2489 __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
2490 }
2491
2492 static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_ps(float * __p,__m128i __m,__m128 __a)2493 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
2494 {
2495 __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
2496 }
2497
2498 /* Cacheability support ops */
2499 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(__m256i * __a,__m256i __b)2500 _mm256_stream_si256(__m256i *__a, __m256i __b)
2501 {
2502 __builtin_nontemporal_store((__v4di)__b, (__v4di*)__a);
2503 }
2504
2505 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(double * __a,__m256d __b)2506 _mm256_stream_pd(double *__a, __m256d __b)
2507 {
2508 __builtin_nontemporal_store((__v4df)__b, (__v4df*)__a);
2509 }
2510
2511 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(float * __p,__m256 __a)2512 _mm256_stream_ps(float *__p, __m256 __a)
2513 {
2514 __builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p);
2515 }
2516
2517 /* Create vectors */
2518 static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd(void)2519 _mm256_undefined_pd(void)
2520 {
2521 return (__m256d)__builtin_ia32_undef256();
2522 }
2523
2524 static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps(void)2525 _mm256_undefined_ps(void)
2526 {
2527 return (__m256)__builtin_ia32_undef256();
2528 }
2529
2530 static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256(void)2531 _mm256_undefined_si256(void)
2532 {
2533 return (__m256i)__builtin_ia32_undef256();
2534 }
2535
2536 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a,double __b,double __c,double __d)2537 _mm256_set_pd(double __a, double __b, double __c, double __d)
2538 {
2539 return (__m256d){ __d, __c, __b, __a };
2540 }
2541
2542 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)2543 _mm256_set_ps(float __a, float __b, float __c, float __d,
2544 float __e, float __f, float __g, float __h)
2545 {
2546 return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
2547 }
2548
2549 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)2550 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
2551 int __i4, int __i5, int __i6, int __i7)
2552 {
2553 return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
2554 }
2555
2556 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)2557 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
2558 short __w11, short __w10, short __w09, short __w08,
2559 short __w07, short __w06, short __w05, short __w04,
2560 short __w03, short __w02, short __w01, short __w00)
2561 {
2562 return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
2563 __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
2564 }
2565
2566 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)2567 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
2568 char __b27, char __b26, char __b25, char __b24,
2569 char __b23, char __b22, char __b21, char __b20,
2570 char __b19, char __b18, char __b17, char __b16,
2571 char __b15, char __b14, char __b13, char __b12,
2572 char __b11, char __b10, char __b09, char __b08,
2573 char __b07, char __b06, char __b05, char __b04,
2574 char __b03, char __b02, char __b01, char __b00)
2575 {
2576 return (__m256i)(__v32qi){
2577 __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
2578 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
2579 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
2580 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
2581 };
2582 }
2583
2584 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a,long long __b,long long __c,long long __d)2585 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
2586 {
2587 return (__m256i)(__v4di){ __d, __c, __b, __a };
2588 }
2589
2590 /* Create vectors with elements in reverse order */
2591 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a,double __b,double __c,double __d)2592 _mm256_setr_pd(double __a, double __b, double __c, double __d)
2593 {
2594 return (__m256d){ __a, __b, __c, __d };
2595 }
2596
2597 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)2598 _mm256_setr_ps(float __a, float __b, float __c, float __d,
2599 float __e, float __f, float __g, float __h)
2600 {
2601 return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
2602 }
2603
2604 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)2605 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
2606 int __i4, int __i5, int __i6, int __i7)
2607 {
2608 return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
2609 }
2610
2611 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)2612 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
2613 short __w11, short __w10, short __w09, short __w08,
2614 short __w07, short __w06, short __w05, short __w04,
2615 short __w03, short __w02, short __w01, short __w00)
2616 {
2617 return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
2618 __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
2619 }
2620
2621 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)2622 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
2623 char __b27, char __b26, char __b25, char __b24,
2624 char __b23, char __b22, char __b21, char __b20,
2625 char __b19, char __b18, char __b17, char __b16,
2626 char __b15, char __b14, char __b13, char __b12,
2627 char __b11, char __b10, char __b09, char __b08,
2628 char __b07, char __b06, char __b05, char __b04,
2629 char __b03, char __b02, char __b01, char __b00)
2630 {
2631 return (__m256i)(__v32qi){
2632 __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
2633 __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
2634 __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
2635 __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
2636 }
2637
2638 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a,long long __b,long long __c,long long __d)2639 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
2640 {
2641 return (__m256i)(__v4di){ __a, __b, __c, __d };
2642 }
2643
2644 /* Create vectors with repeated elements */
2645 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)2646 _mm256_set1_pd(double __w)
2647 {
2648 return (__m256d){ __w, __w, __w, __w };
2649 }
2650
2651 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)2652 _mm256_set1_ps(float __w)
2653 {
2654 return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
2655 }
2656
2657 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)2658 _mm256_set1_epi32(int __i)
2659 {
2660 return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
2661 }
2662
2663 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)2664 _mm256_set1_epi16(short __w)
2665 {
2666 return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
2667 __w, __w, __w, __w, __w, __w };
2668 }
2669
2670 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)2671 _mm256_set1_epi8(char __b)
2672 {
2673 return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
2674 __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
2675 __b, __b, __b, __b, __b, __b, __b };
2676 }
2677
2678 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)2679 _mm256_set1_epi64x(long long __q)
2680 {
2681 return (__m256i)(__v4di){ __q, __q, __q, __q };
2682 }
2683
2684 /* Create __zeroed vectors */
2685 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)2686 _mm256_setzero_pd(void)
2687 {
2688 return (__m256d){ 0, 0, 0, 0 };
2689 }
2690
2691 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)2692 _mm256_setzero_ps(void)
2693 {
2694 return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
2695 }
2696
2697 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)2698 _mm256_setzero_si256(void)
2699 {
2700 return (__m256i){ 0LL, 0LL, 0LL, 0LL };
2701 }
2702
2703 /* Cast between vector types */
2704 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)2705 _mm256_castpd_ps(__m256d __a)
2706 {
2707 return (__m256)__a;
2708 }
2709
2710 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)2711 _mm256_castpd_si256(__m256d __a)
2712 {
2713 return (__m256i)__a;
2714 }
2715
2716 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)2717 _mm256_castps_pd(__m256 __a)
2718 {
2719 return (__m256d)__a;
2720 }
2721
2722 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)2723 _mm256_castps_si256(__m256 __a)
2724 {
2725 return (__m256i)__a;
2726 }
2727
2728 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)2729 _mm256_castsi256_ps(__m256i __a)
2730 {
2731 return (__m256)__a;
2732 }
2733
2734 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)2735 _mm256_castsi256_pd(__m256i __a)
2736 {
2737 return (__m256d)__a;
2738 }
2739
2740 static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)2741 _mm256_castpd256_pd128(__m256d __a)
2742 {
2743 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
2744 }
2745
2746 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)2747 _mm256_castps256_ps128(__m256 __a)
2748 {
2749 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
2750 }
2751
2752 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)2753 _mm256_castsi256_si128(__m256i __a)
2754 {
2755 return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
2756 }
2757
2758 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)2759 _mm256_castpd128_pd256(__m128d __a)
2760 {
2761 return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
2762 }
2763
2764 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)2765 _mm256_castps128_ps256(__m128 __a)
2766 {
2767 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
2768 }
2769
2770 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)2771 _mm256_castsi128_si256(__m128i __a)
2772 {
2773 return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
2774 }
2775
2776 /*
2777 Vector insert.
2778 We use macros rather than inlines because we only want to accept
2779 invocations where the immediate M is a constant expression.
2780 */
2781 #define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
2782 (__m256)__builtin_shufflevector( \
2783 (__v8sf)(__m256)(V1), \
2784 (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
2785 (((M) & 1) ? 0 : 8), \
2786 (((M) & 1) ? 1 : 9), \
2787 (((M) & 1) ? 2 : 10), \
2788 (((M) & 1) ? 3 : 11), \
2789 (((M) & 1) ? 8 : 4), \
2790 (((M) & 1) ? 9 : 5), \
2791 (((M) & 1) ? 10 : 6), \
2792 (((M) & 1) ? 11 : 7) );})
2793
2794 #define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
2795 (__m256d)__builtin_shufflevector( \
2796 (__v4df)(__m256d)(V1), \
2797 (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
2798 (((M) & 1) ? 0 : 4), \
2799 (((M) & 1) ? 1 : 5), \
2800 (((M) & 1) ? 4 : 2), \
2801 (((M) & 1) ? 5 : 3) );})
2802
2803 #define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
2804 (__m256i)__builtin_shufflevector( \
2805 (__v4di)(__m256i)(V1), \
2806 (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
2807 (((M) & 1) ? 0 : 4), \
2808 (((M) & 1) ? 1 : 5), \
2809 (((M) & 1) ? 4 : 2), \
2810 (((M) & 1) ? 5 : 3) );})
2811
2812 /*
2813 Vector extract.
2814 We use macros rather than inlines because we only want to accept
2815 invocations where the immediate M is a constant expression.
2816 */
2817 #define _mm256_extractf128_ps(V, M) __extension__ ({ \
2818 (__m128)__builtin_shufflevector( \
2819 (__v8sf)(__m256)(V), \
2820 (__v8sf)(_mm256_undefined_ps()), \
2821 (((M) & 1) ? 4 : 0), \
2822 (((M) & 1) ? 5 : 1), \
2823 (((M) & 1) ? 6 : 2), \
2824 (((M) & 1) ? 7 : 3) );})
2825
2826 #define _mm256_extractf128_pd(V, M) __extension__ ({ \
2827 (__m128d)__builtin_shufflevector( \
2828 (__v4df)(__m256d)(V), \
2829 (__v4df)(_mm256_undefined_pd()), \
2830 (((M) & 1) ? 2 : 0), \
2831 (((M) & 1) ? 3 : 1) );})
2832
2833 #define _mm256_extractf128_si256(V, M) __extension__ ({ \
2834 (__m128i)__builtin_shufflevector( \
2835 (__v4di)(__m256i)(V), \
2836 (__v4di)(_mm256_undefined_si256()), \
2837 (((M) & 1) ? 2 : 0), \
2838 (((M) & 1) ? 3 : 1) );})
2839
2840 /* SIMD load ops (unaligned) */
2841 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const * __addr_hi,float const * __addr_lo)2842 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
2843 {
2844 __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
2845 return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
2846 }
2847
2848 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const * __addr_hi,double const * __addr_lo)2849 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
2850 {
2851 __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
2852 return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
2853 }
2854
2855 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i const * __addr_hi,__m128i const * __addr_lo)2856 _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
2857 {
2858 __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
2859 return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
2860 }
2861
2862 /* SIMD store ops (unaligned) */
2863 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float * __addr_hi,float * __addr_lo,__m256 __a)2864 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
2865 {
2866 __m128 __v128;
2867
2868 __v128 = _mm256_castps256_ps128(__a);
2869 _mm_storeu_ps(__addr_lo, __v128);
2870 __v128 = _mm256_extractf128_ps(__a, 1);
2871 _mm_storeu_ps(__addr_hi, __v128);
2872 }
2873
2874 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double * __addr_hi,double * __addr_lo,__m256d __a)2875 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
2876 {
2877 __m128d __v128;
2878
2879 __v128 = _mm256_castpd256_pd128(__a);
2880 _mm_storeu_pd(__addr_lo, __v128);
2881 __v128 = _mm256_extractf128_pd(__a, 1);
2882 _mm_storeu_pd(__addr_hi, __v128);
2883 }
2884
2885 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i * __addr_hi,__m128i * __addr_lo,__m256i __a)2886 _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
2887 {
2888 __m128i __v128;
2889
2890 __v128 = _mm256_castsi256_si128(__a);
2891 _mm_storeu_si128(__addr_lo, __v128);
2892 __v128 = _mm256_extractf128_si256(__a, 1);
2893 _mm_storeu_si128(__addr_hi, __v128);
2894 }
2895
2896 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128(__m128 __hi,__m128 __lo)2897 _mm256_set_m128 (__m128 __hi, __m128 __lo) {
2898 return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
2899 }
2900
2901 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d(__m128d __hi,__m128d __lo)2902 _mm256_set_m128d (__m128d __hi, __m128d __lo) {
2903 return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2904 }
2905
2906 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i(__m128i __hi,__m128i __lo)2907 _mm256_set_m128i (__m128i __hi, __m128i __lo) {
2908 return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2909 }
2910
2911 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128(__m128 __lo,__m128 __hi)2912 _mm256_setr_m128 (__m128 __lo, __m128 __hi) {
2913 return _mm256_set_m128(__hi, __lo);
2914 }
2915
2916 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d(__m128d __lo,__m128d __hi)2917 _mm256_setr_m128d (__m128d __lo, __m128d __hi) {
2918 return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2919 }
2920
2921 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i(__m128i __lo,__m128i __hi)2922 _mm256_setr_m128i (__m128i __lo, __m128i __hi) {
2923 return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2924 }
2925
2926 #undef __DEFAULT_FN_ATTRS
2927
2928 #endif /* __AVXINTRIN_H */
2929