Searched refs:_logits (Results 1 – 12 of 12) sorted by relevance
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head_test.py | 351 self._logits = ((1., 0., 0.),) 369 "labels/logits_mean/class0": self._logits[0][0], 370 "labels/logits_mean/class1": self._logits[0][1], 371 "labels/logits_mean/class2": self._logits[0][2], 372 "labels/prediction_mean/class0": self._logits[0][0], 373 "labels/prediction_mean/class1": self._logits[0][1], 374 "labels/prediction_mean/class2": self._logits[0][2], 375 "labels/probability_mean/class0": _sigmoid(self._logits[0][0]), 376 "labels/probability_mean/class1": _sigmoid(self._logits[0][1]), 377 "labels/probability_mean/class2": _sigmoid(self._logits[0][2]), [all …]
|
D | head.py | 592 def _logits(logits_input, logits, logits_dimension): function 744 logits = _logits(logits_input, logits, self.logits_dimension) 865 logits = _logits(logits_input, logits, self.logits_dimension) 1070 logits = _logits(logits_input, logits, self.logits_dimension) 1267 logits = _logits(logits_input, logits, self.logits_dimension) 1367 logits = _logits(logits_input, logits, self.logits_dimension)
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | relaxed_onehot_categorical.py | 177 self._logits, self._probs = distribution_util.get_logits_and_probs( 182 dtype = self._logits.dtype 192 logits_shape_static = self._logits.get_shape().with_rank_at_least(1) 200 self._batch_rank = array_ops.rank(self._logits) - 1 203 self._event_size = array_ops.shape(self._logits)[-1] 211 graph_parents=[self._logits, 229 return self._logits 237 return array_ops.shape(self._logits)[:-1]
|
D | onehot_categorical.py | 129 self._logits, self._probs = distribution_util.get_logits_and_probs( 133 logits_shape_static = self._logits.get_shape().with_rank_at_least(1) 141 self._batch_rank = array_ops.rank(self._logits) - 1 144 self._event_size = array_ops.shape(self._logits)[-1] 152 graph_parents=[self._logits, 164 return self._logits
|
D | relaxed_bernoulli.py | 182 self._logits, self._probs = distribution_util.get_logits_and_probs( 186 self._logits / self._temperature, 208 return self._logits
|
D | negative_binomial.py | 104 self._logits, self._probs = distribution_util.get_logits_and_probs( 116 graph_parents=[self._total_count, self._probs, self._logits], 127 return self._logits
|
D | geometric.py | 99 self._logits, self._probs = distribution_util.get_logits_and_probs( 112 graph_parents=[self._probs, self._logits], 118 return self._logits
|
D | binomial.py | 188 self._logits, self._probs = distribution_util.get_logits_and_probs( 200 self._logits, 212 return self._logits
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | categorical.py | 195 self._logits, self._probs = distribution_util.get_logits_and_probs( 203 self._logits = distribution_util.embed_check_categorical_event_shape( 204 self._logits) 206 logits_shape_static = self._logits.get_shape().with_rank_at_least(1) 214 self._batch_rank = array_ops.rank(self._logits) - 1 216 logits_shape = array_ops.shape(self._logits, name="logits_shape") 240 graph_parents=[self._logits, 252 return self._logits
|
D | bernoulli.py | 85 self._logits, self._probs = distribution_util.get_logits_and_probs( 96 graph_parents=[self._logits, self._probs], 106 return self._logits 114 return array_ops.shape(self._logits) 117 return self._logits.get_shape()
|
D | multinomial.py | 201 self._logits, self._probs = distribution_util.get_logits_and_probs( 215 self._logits, 227 return self._logits
|
/external/tensorflow/tensorflow/core/kernels/hexagon/ |
D | graph_transferer_test.cc | 88 auto _logits = ops::AsNodeOut(scope, logits); in BuildSoftmaxOps() local 92 auto builder = NodeBuilder(unique_name, "Softmax").Input(_logits); in BuildSoftmaxOps()
|