Home
last modified time | relevance | path

Searched refs:_logits (Results 1 – 12 of 12) sorted by relevance

/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/
Dhead_test.py351 self._logits = ((1., 0., 0.),)
369 "labels/logits_mean/class0": self._logits[0][0],
370 "labels/logits_mean/class1": self._logits[0][1],
371 "labels/logits_mean/class2": self._logits[0][2],
372 "labels/prediction_mean/class0": self._logits[0][0],
373 "labels/prediction_mean/class1": self._logits[0][1],
374 "labels/prediction_mean/class2": self._logits[0][2],
375 "labels/probability_mean/class0": _sigmoid(self._logits[0][0]),
376 "labels/probability_mean/class1": _sigmoid(self._logits[0][1]),
377 "labels/probability_mean/class2": _sigmoid(self._logits[0][2]),
[all …]
Dhead.py592 def _logits(logits_input, logits, logits_dimension): function
744 logits = _logits(logits_input, logits, self.logits_dimension)
865 logits = _logits(logits_input, logits, self.logits_dimension)
1070 logits = _logits(logits_input, logits, self.logits_dimension)
1267 logits = _logits(logits_input, logits, self.logits_dimension)
1367 logits = _logits(logits_input, logits, self.logits_dimension)
/external/tensorflow/tensorflow/contrib/distributions/python/ops/
Drelaxed_onehot_categorical.py177 self._logits, self._probs = distribution_util.get_logits_and_probs(
182 dtype = self._logits.dtype
192 logits_shape_static = self._logits.get_shape().with_rank_at_least(1)
200 self._batch_rank = array_ops.rank(self._logits) - 1
203 self._event_size = array_ops.shape(self._logits)[-1]
211 graph_parents=[self._logits,
229 return self._logits
237 return array_ops.shape(self._logits)[:-1]
Donehot_categorical.py129 self._logits, self._probs = distribution_util.get_logits_and_probs(
133 logits_shape_static = self._logits.get_shape().with_rank_at_least(1)
141 self._batch_rank = array_ops.rank(self._logits) - 1
144 self._event_size = array_ops.shape(self._logits)[-1]
152 graph_parents=[self._logits,
164 return self._logits
Drelaxed_bernoulli.py182 self._logits, self._probs = distribution_util.get_logits_and_probs(
186 self._logits / self._temperature,
208 return self._logits
Dnegative_binomial.py104 self._logits, self._probs = distribution_util.get_logits_and_probs(
116 graph_parents=[self._total_count, self._probs, self._logits],
127 return self._logits
Dgeometric.py99 self._logits, self._probs = distribution_util.get_logits_and_probs(
112 graph_parents=[self._probs, self._logits],
118 return self._logits
Dbinomial.py188 self._logits, self._probs = distribution_util.get_logits_and_probs(
200 self._logits,
212 return self._logits
/external/tensorflow/tensorflow/python/ops/distributions/
Dcategorical.py195 self._logits, self._probs = distribution_util.get_logits_and_probs(
203 self._logits = distribution_util.embed_check_categorical_event_shape(
204 self._logits)
206 logits_shape_static = self._logits.get_shape().with_rank_at_least(1)
214 self._batch_rank = array_ops.rank(self._logits) - 1
216 logits_shape = array_ops.shape(self._logits, name="logits_shape")
240 graph_parents=[self._logits,
252 return self._logits
Dbernoulli.py85 self._logits, self._probs = distribution_util.get_logits_and_probs(
96 graph_parents=[self._logits, self._probs],
106 return self._logits
114 return array_ops.shape(self._logits)
117 return self._logits.get_shape()
Dmultinomial.py201 self._logits, self._probs = distribution_util.get_logits_and_probs(
215 self._logits,
227 return self._logits
/external/tensorflow/tensorflow/core/kernels/hexagon/
Dgraph_transferer_test.cc88 auto _logits = ops::AsNodeOut(scope, logits); in BuildSoftmaxOps() local
92 auto builder = NodeBuilder(unique_name, "Softmax").Input(_logits); in BuildSoftmaxOps()