/external/tensorflow/tensorflow/core/kernels/ |
D | batch_matmul_op_impl.h | 62 Eigen::IndexPair<Eigen::DenseIndex> ContractionDims(bool adj_x, bool adj_y) { in ContractionDims() argument 63 return Eigen::IndexPair<Eigen::DenseIndex>(adj_x ? 0 : 1, adj_y ? 1 : 0); in ContractionDims() 77 const Tensor in_y, bool adj_x, bool adj_y, Tensor* out, in Run() 89 contract_pairs[0] = ContractionDims(adj_x, adj_y); in Run() 94 if (adj_x != adj_y) { in Run() 113 const Tensor& in_y, bool adj_x, bool adj_y, Tensor* out, 119 contract_pairs[0] = ContractionDims(adj_x, adj_y); 133 static void Multiply(bool adj_x, bool adj_y, Tx x, Ty y, Tz z) { 135 if (!adj_y) { 141 if (!adj_y) { [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BatchMatMul.pbtxt | 28 name: "adj_y" 40 the `adj_x` or `adj_y` flag to `True`, which are by default `False`. 48 c_o = r_y if adj_y else c_y
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | math_utils_test.py | 105 adj_y=True).eval()) 109 adj_x=True, adj_y=True).eval()) 128 adj_y=True).eval()) 132 adj_x=True, adj_y=True).eval())
|
D | math_utils.py | 270 def batch_times_matrix(batch, matrix, adj_x=False, adj_y=False): argument 302 if adj_y: 311 math_ops.matmul(batch_reshaped, matrix, adjoint_b=adj_y), result_shape) 314 def matrix_times_batch(matrix, batch, adj_x=False, adj_y=False): argument 318 batch=batch, matrix=matrix, adj_x=not adj_y, adj_y=not adj_x),
|
/external/tensorflow/tensorflow/core/ops/ |
D | math_ops_test.cc | 392 auto set_adj = [&op](bool adj_x, bool adj_y) { in TEST() argument 397 .Attr("adj_y", adj_y) in TEST()
|
D | math_ops.cc | 135 bool adj_y; in __anonb22bfa860202() local 137 TF_RETURN_IF_ERROR(c->GetAttr("adj_y", &adj_y)); in __anonb22bfa860202() 139 DimensionHandle output_cols = c->Dim(b_shape, adj_y ? -2 : -1); in __anonb22bfa860202() 152 c->Dim(b_shape, adj_y ? -1 : -2), &unused)); in __anonb22bfa860202()
|
D | ops.pbtxt | 3344 name: "adj_y"
|
/external/tensorflow/tensorflow/core/graph/ |
D | testlib.h | 85 Node* BatchMatmul(Graph* g, Node* in0, Node* in1, bool adj_x, bool adj_y);
|
D | testlib.cc | 171 Node* BatchMatmul(Graph* g, Node* in0, Node* in1, bool adj_x, bool adj_y) { in BatchMatmul() argument 177 .Attr("adj_y", adj_y) in BatchMatmul()
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | unroll_batch_matmul.cc | 242 if (batch_op->adj_y) { in Run()
|
/external/tensorflow/tensorflow/python/ops/ |
D | math_grad.py | 1250 adj_y = op.get_attr("adj_y") 1253 if not adj_y: 1260 if not adj_y:
|
D | math_ops.py | 2542 a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)
|
/external/tensorflow/tensorflow/lite/toco/ |
D | model.h | 984 bool adj_y = false;
|
D | import_tensorflow.cc | 1101 batch_matmul->adj_y = GetBoolAttr(node, "adj_y"); in ConvertBatchMatMulOperator()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | randomized_tests.cc | 1211 bool adj_y = random_bool(generator()); in TEST_F() local 1215 if (adj_y) { in TEST_F() 1224 .Attr("adj_y", adj_y)); in TEST_F()
|
/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | pfor.py | 1977 adj_y = pfor_input.get_attr("adj_y") 1981 output = math_ops.matmul(x, y, adjoint_a=adj_x, adjoint_b=adj_y)
|
/external/tensorflow/tensorflow/python/keras/ |
D | backend.py | 1560 adj_y = True if axes[1] == ndim(y) - 1 else None 1561 out = math_ops.matmul(x, y, adjoint_a=adj_x, adjoint_b=adj_y)
|
/external/tensorflow/tensorflow/core/ops/compat/ |
D | ops_history.v0.pbtxt | 4643 name: "adj_y" 4684 name: "adj_y" 4726 name: "adj_y" 4769 name: "adj_y"
|
D | ops_history.v2.pbtxt | 9257 name: "adj_y" 9301 name: "adj_y" 9345 name: "adj_y" 9390 name: "adj_y"
|
D | ops_history.v1.pbtxt | 9257 name: "adj_y" 9301 name: "adj_y" 9345 name: "adj_y" 9390 name: "adj_y"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.raw_ops.pbtxt | 317 …argspec: "args=[\'x\', \'y\', \'adj_x\', \'adj_y\', \'name\'], varargs=None, keywords=None, defaul…
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.raw_ops.pbtxt | 317 …argspec: "args=[\'x\', \'y\', \'adj_x\', \'adj_y\', \'name\'], varargs=None, keywords=None, defaul…
|