/external/tensorflow/tensorflow/lite/kernels/ |
D | concatenation.cc | 91 VectorOfTensors<int8_t> all_inputs(*context, *node->inputs); in Prepare() local 117 VectorOfTensors<scalar> all_inputs(*context, *node->inputs); \ in Eval() 121 type::Concatenation(op_params, all_inputs.shapes(), all_inputs.data(), \ in Eval() 128 VectorOfQuantizedTensors all_inputs(*context, *node->inputs); \ in Eval() 131 op_params.input_zeropoint = all_inputs.zero_point(); \ in Eval() 132 op_params.input_scale = all_inputs.scale(); \ in Eval() 136 type::ConcatenationWithScaling(op_params, all_inputs.shapes(), \ in Eval() 137 all_inputs.data(), GetTensorShape(output), \ in Eval()
|
D | pack.cc | 86 VectorOfTensors<T> all_inputs(*context, *node->inputs); in PackImpl() local 91 reference_ops::Pack<T>(op_params, all_inputs.shapes(), all_inputs.data(), in PackImpl()
|
D | add_n.cc | 55 VectorOfTensors<T> all_inputs(*context, *node->inputs); in EvalAddN() local 59 reference_ops::AddN<T>(GetTensorShape(input1), num_inputs, all_inputs.data(), in EvalAddN()
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
D | summarize_graph_main.cc | 67 std::vector<const NodeDef*> all_inputs(placeholders); in PrintBenchmarkUsage() local 68 all_inputs.insert(all_inputs.end(), variables.begin(), variables.end()); in PrintBenchmarkUsage() 73 for (const NodeDef* node : all_inputs) { in PrintBenchmarkUsage()
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | distributed_training_utils.py | 104 all_inputs = flatten_perdevice_values(distribution_strategy, 136 return all_inputs, all_outputs, all_updates, all_session_args 790 (all_inputs, all_outputs, all_updates, all_session_args) = unwrap_values( 799 all_inputs, 832 (all_inputs, all_outputs, _, _) = unwrap_values( 841 all_inputs,
|
D | training.py | 2372 all_inputs = [] 2396 all_inputs += list(x_input) 2400 all_inputs = [x_input[k] for k in keys] 2406 all_inputs.append(x_input) 2439 all_inputs += list(y_input) 2448 all_inputs.append(y_input) 2452 if any(tensor_util.is_tensor(v) for v in all_inputs): 2453 if not all(tensor_util.is_tensor(v) for v in all_inputs): 2482 not is_dataset and any(_is_symbolic_tensor(v) for v in all_inputs)):
|
D | training_distributed.py | 236 (all_inputs, all_outputs, all_updates, 241 all_inputs,
|
/external/tensorflow/tensorflow/python/debug/lib/ |
D | stepper.py | 266 all_inputs = set(non_control_inputs + control_inputs) 270 for inp in all_inputs: 275 for inp in all_inputs: 572 all_inputs = set(non_control_inputs + control_inputs) 575 for inp in all_inputs:
|
/external/tensorflow/tensorflow/python/debug/cli/ |
D | analyzer_cli.py | 1406 all_inputs = self._exclude_blacklisted_ops( 1408 is_ctrl = [False] * len(all_inputs) 1414 all_inputs.extend(ctrl_inputs) 1417 if not all_inputs: 1436 if all_inputs and depth > max_depth: 1443 for i in xrange(len(all_inputs)): 1444 inp = all_inputs[i] 1458 if i == len(all_inputs) - 1:
|
/external/tensorflow/tensorflow/python/ops/ |
D | custom_gradient.py | 260 all_inputs = list(args) + list(kwargs.values()) 263 variables = [v for v in set(tape.watched_variables()) if v not in all_inputs]
|
/external/tensorflow/tensorflow/python/training/ |
D | evaluation_test.py | 142 all_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) 146 [all_inputs, all_labels], num_epochs=1)
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/kernel_tests/ |
D | cudnn_rnn_test.py | 1254 all_inputs = [inputs, params] 1256 all_inputs.append(s) 1259 sess, total_sum, all_inputs, 1267 sess, total_sum, all_inputs,
|
/external/tensorflow/tensorflow/contrib/legacy_seq2seq/python/ops/ |
D | seq2seq.py | 1207 all_inputs = encoder_inputs + decoder_inputs + targets + weights 1210 with ops.name_scope(name, "model_with_buckets", all_inputs):
|
/external/tensorflow/tensorflow/compiler/tf2tensorrt/convert/ |
D | convert_nodes.cc | 2008 std::vector<nvinfer1::ITensor*> all_inputs; in ConvertPlugin() local 2009 all_inputs.reserve(inputs.size()); in ConvertPlugin() 2011 all_inputs.emplace_back(const_cast<nvinfer1::ITensor*>(input.tensor())); in ConvertPlugin() 2034 &all_inputs[0], static_cast<int>(inputs.size()), *plugin); in ConvertPlugin()
|