• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <math.h>
14 
15 #include "config/aom_dsp_rtcd.h"
16 
17 #include "aom_dsp/ssim.h"
18 #include "aom_ports/mem.h"
19 #include "aom_ports/system_state.h"
20 
aom_ssim_parms_16x16_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)21 void aom_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
22                             uint32_t *sum_s, uint32_t *sum_r,
23                             uint32_t *sum_sq_s, uint32_t *sum_sq_r,
24                             uint32_t *sum_sxr) {
25   int i, j;
26   for (i = 0; i < 16; i++, s += sp, r += rp) {
27     for (j = 0; j < 16; j++) {
28       *sum_s += s[j];
29       *sum_r += r[j];
30       *sum_sq_s += s[j] * s[j];
31       *sum_sq_r += r[j] * r[j];
32       *sum_sxr += s[j] * r[j];
33     }
34   }
35 }
36 
aom_ssim_parms_8x8_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)37 void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
38                           uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
39                           uint32_t *sum_sq_r, uint32_t *sum_sxr) {
40   int i, j;
41   for (i = 0; i < 8; i++, s += sp, r += rp) {
42     for (j = 0; j < 8; j++) {
43       *sum_s += s[j];
44       *sum_r += r[j];
45       *sum_sq_s += s[j] * s[j];
46       *sum_sq_r += r[j] * r[j];
47       *sum_sxr += s[j] * r[j];
48     }
49   }
50 }
51 
aom_highbd_ssim_parms_8x8_c(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)52 void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
53                                  int rp, uint32_t *sum_s, uint32_t *sum_r,
54                                  uint32_t *sum_sq_s, uint32_t *sum_sq_r,
55                                  uint32_t *sum_sxr) {
56   int i, j;
57   for (i = 0; i < 8; i++, s += sp, r += rp) {
58     for (j = 0; j < 8; j++) {
59       *sum_s += s[j];
60       *sum_r += r[j];
61       *sum_sq_s += s[j] * s[j];
62       *sum_sq_r += r[j] * r[j];
63       *sum_sxr += s[j] * r[j];
64     }
65   }
66 }
67 
68 static const int64_t cc1 = 26634;        // (64^2*(.01*255)^2
69 static const int64_t cc2 = 239708;       // (64^2*(.03*255)^2
70 static const int64_t cc1_10 = 428658;    // (64^2*(.01*1023)^2
71 static const int64_t cc2_10 = 3857925;   // (64^2*(.03*1023)^2
72 static const int64_t cc1_12 = 6868593;   // (64^2*(.01*4095)^2
73 static const int64_t cc2_12 = 61817334;  // (64^2*(.03*4095)^2
74 
similarity(uint32_t sum_s,uint32_t sum_r,uint32_t sum_sq_s,uint32_t sum_sq_r,uint32_t sum_sxr,int count,uint32_t bd)75 static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
76                          uint32_t sum_sq_r, uint32_t sum_sxr, int count,
77                          uint32_t bd) {
78   int64_t ssim_n, ssim_d;
79   int64_t c1, c2;
80   if (bd == 8) {
81     // scale the constants by number of pixels
82     c1 = (cc1 * count * count) >> 12;
83     c2 = (cc2 * count * count) >> 12;
84   } else if (bd == 10) {
85     c1 = (cc1_10 * count * count) >> 12;
86     c2 = (cc2_10 * count * count) >> 12;
87   } else if (bd == 12) {
88     c1 = (cc1_12 * count * count) >> 12;
89     c2 = (cc2_12 * count * count) >> 12;
90   } else {
91     c1 = c2 = 0;
92     assert(0);
93   }
94 
95   ssim_n = (2 * sum_s * sum_r + c1) *
96            ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);
97 
98   ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
99            ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
100             (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);
101 
102   return ssim_n * 1.0 / ssim_d;
103 }
104 
ssim_8x8(const uint8_t * s,int sp,const uint8_t * r,int rp)105 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
106   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
107   aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
108                      &sum_sxr);
109   return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
110 }
111 
highbd_ssim_8x8(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t bd,uint32_t shift)112 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
113                               int rp, uint32_t bd, uint32_t shift) {
114   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
115   aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
116                             &sum_sxr);
117   return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
118                     sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
119 }
120 
121 // We are using a 8x8 moving window with starting location of each 8x8 window
122 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
123 // block boundaries to penalize blocking artifacts.
aom_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height)124 static double aom_ssim2(const uint8_t *img1, const uint8_t *img2,
125                         int stride_img1, int stride_img2, int width,
126                         int height) {
127   int i, j;
128   int samples = 0;
129   double ssim_total = 0;
130 
131   // sample point start with each 4x4 location
132   for (i = 0; i <= height - 8;
133        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
134     for (j = 0; j <= width - 8; j += 4) {
135       double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
136       ssim_total += v;
137       samples++;
138     }
139   }
140   ssim_total /= samples;
141   return ssim_total;
142 }
143 
aom_highbd_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height,uint32_t bd,uint32_t shift)144 static double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
145                                int stride_img1, int stride_img2, int width,
146                                int height, uint32_t bd, uint32_t shift) {
147   int i, j;
148   int samples = 0;
149   double ssim_total = 0;
150 
151   // sample point start with each 4x4 location
152   for (i = 0; i <= height - 8;
153        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
154     for (j = 0; j <= width - 8; j += 4) {
155       double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
156                                  CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
157                                  shift);
158       ssim_total += v;
159       samples++;
160     }
161   }
162   ssim_total /= samples;
163   return ssim_total;
164 }
165 
aom_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight)166 double aom_calc_ssim(const YV12_BUFFER_CONFIG *source,
167                      const YV12_BUFFER_CONFIG *dest, double *weight) {
168   double abc[3];
169   for (int i = 0; i < 3; ++i) {
170     const int is_uv = i > 0;
171     abc[i] = aom_ssim2(source->buffers[i], dest->buffers[i],
172                        source->strides[is_uv], dest->strides[is_uv],
173                        source->crop_widths[is_uv], source->crop_heights[is_uv]);
174   }
175 
176   *weight = 1;
177   return abc[0] * .8 + .1 * (abc[1] + abc[2]);
178 }
179 
180 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
181 //
182 // Re working out the math ->
183 //
184 // ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
185 //   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
186 //
187 // mean(x) = sum(x) / n
188 //
189 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
190 //
191 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
192 //
193 // ssim(x,y) =
194 //   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
195 //   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
196 //    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
197 //     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
198 //
199 // factoring out n*n
200 //
201 // ssim(x,y) =
202 //   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
203 //   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
204 //    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
205 //
206 // Replace c1 with n*n * c1 for the final step that leads to this code:
207 // The final step scales by 12 bits so we don't lose precision in the constants.
208 
ssimv_similarity(const Ssimv * sv,int64_t n)209 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
210   // Scale the constants by number of pixels.
211   const int64_t c1 = (cc1 * n * n) >> 12;
212   const int64_t c2 = (cc2 * n * n) >> 12;
213 
214   const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
215                    (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
216 
217   // Since these variables are unsigned sums, convert to double so
218   // math is done in double arithmetic.
219   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
220                    (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
221                     n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
222 
223   return l * v;
224 }
225 
226 // The first term of the ssim metric is a luminance factor.
227 //
228 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
229 //
230 // This luminance factor is super sensitive to the dark side of luminance
231 // values and completely insensitive on the white side.  check out 2 sets
232 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
233 // 2*250*252/ (250^2+252^2) => .99999997
234 //
235 // As a result in this tweaked version of the calculation in which the
236 // luminance is taken as percentage off from peak possible.
237 //
238 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
239 //
ssimv_similarity2(const Ssimv * sv,int64_t n)240 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
241   // Scale the constants by number of pixels.
242   const int64_t c1 = (cc1 * n * n) >> 12;
243   const int64_t c2 = (cc2 * n * n) >> 12;
244 
245   const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
246   const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
247 
248   // Since these variables are unsigned, sums convert to double so
249   // math is done in double arithmetic.
250   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
251                    (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
252                     n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
253 
254   return l * v;
255 }
ssimv_parms(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,Ssimv * sv)256 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
257                         int img2_pitch, Ssimv *sv) {
258   aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
259                      &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
260 }
261 
aom_get_ssim_metrics(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,int width,int height,Ssimv * sv2,Metrics * m,int do_inconsistency)262 double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
263                             int img2_pitch, int width, int height, Ssimv *sv2,
264                             Metrics *m, int do_inconsistency) {
265   double dssim_total = 0;
266   double ssim_total = 0;
267   double ssim2_total = 0;
268   double inconsistency_total = 0;
269   int i, j;
270   int c = 0;
271   double norm;
272   double old_ssim_total = 0;
273   aom_clear_system_state();
274   // We can sample points as frequently as we like start with 1 per 4x4.
275   for (i = 0; i < height;
276        i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
277     for (j = 0; j < width; j += 4, ++c) {
278       Ssimv sv = { 0, 0, 0, 0, 0, 0 };
279       double ssim;
280       double ssim2;
281       double dssim;
282       uint32_t var_new;
283       uint32_t var_old;
284       uint32_t mean_new;
285       uint32_t mean_old;
286       double ssim_new;
287       double ssim_old;
288 
289       // Not sure there's a great way to handle the edge pixels
290       // in ssim when using a window. Seems biased against edge pixels
291       // however you handle this. This uses only samples that are
292       // fully in the frame.
293       if (j + 8 <= width && i + 8 <= height) {
294         ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
295       }
296 
297       ssim = ssimv_similarity(&sv, 64);
298       ssim2 = ssimv_similarity2(&sv, 64);
299 
300       sv.ssim = ssim2;
301 
302       // dssim is calculated to use as an actual error metric and
303       // is scaled up to the same range as sum square error.
304       // Since we are subsampling every 16th point maybe this should be
305       // *16 ?
306       dssim = 255 * 255 * (1 - ssim2) / 2;
307 
308       // Here I introduce a new error metric: consistency-weighted
309       // SSIM-inconsistency.  This metric isolates frames where the
310       // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
311       // sharper or blurrier than the others. Higher values indicate a
312       // temporally inconsistent SSIM. There are two ideas at work:
313       //
314       // 1) 'SSIM-inconsistency': the total inconsistency value
315       // reflects how much SSIM values are changing between this
316       // source / reference frame pair and the previous pair.
317       //
318       // 2) 'consistency-weighted': weights de-emphasize areas in the
319       // frame where the scene content has changed. Changes in scene
320       // content are detected via changes in local variance and local
321       // mean.
322       //
323       // Thus the overall measure reflects how inconsistent the SSIM
324       // values are, over consistent regions of the frame.
325       //
326       // The metric has three terms:
327       //
328       // term 1 -> uses change in scene Variance to weight error score
329       //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
330       //  larger changes from one frame to the next mean we care
331       //  less about consistency.
332       //
333       // term 2 -> uses change in local scene luminance to weight error
334       //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
335       //  larger changes from one frame to the next mean we care
336       //  less about consistency.
337       //
338       // term3 -> measures inconsistency in ssim scores between frames
339       //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
340       //
341       // This term compares the ssim score for the same location in 2
342       // subsequent frames.
343       var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
344       var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
345       mean_new = sv.sum_s;
346       mean_old = sv2[c].sum_s;
347       ssim_new = sv.ssim;
348       ssim_old = sv2[c].ssim;
349 
350       if (do_inconsistency) {
351         // We do the metric once for every 4x4 block in the image. Since
352         // we are scaling the error to SSE for use in a psnr calculation
353         // 1.0 = 4x4x255x255 the worst error we can possibly have.
354         static const double kScaling = 4. * 4 * 255 * 255;
355 
356         // The constants have to be non 0 to avoid potential divide by 0
357         // issues other than that they affect kind of a weighting between
358         // the terms.  No testing of what the right terms should be has been
359         // done.
360         static const double c1 = 1, c2 = 1, c3 = 1;
361 
362         // This measures how much consistent variance is in two consecutive
363         // source frames. 1.0 means they have exactly the same variance.
364         const double variance_term =
365             (2.0 * var_old * var_new + c1) /
366             (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
367 
368         // This measures how consistent the local mean are between two
369         // consecutive frames. 1.0 means they have exactly the same mean.
370         const double mean_term =
371             (2.0 * mean_old * mean_new + c2) /
372             (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
373 
374         // This measures how consistent the ssims of two
375         // consecutive frames is. 1.0 means they are exactly the same.
376         double ssim_term =
377             pow((2.0 * ssim_old * ssim_new + c3) /
378                     (ssim_old * ssim_old + ssim_new * ssim_new + c3),
379                 5);
380 
381         double this_inconsistency;
382 
383         // Floating point math sometimes makes this > 1 by a tiny bit.
384         // We want the metric to scale between 0 and 1.0 so we can convert
385         // it to an snr scaled value.
386         if (ssim_term > 1) ssim_term = 1;
387 
388         // This converts the consistency metric to an inconsistency metric
389         // ( so we can scale it like psnr to something like sum square error.
390         // The reason for the variance and mean terms is the assumption that
391         // if there are big changes in the source we shouldn't penalize
392         // inconsistency in ssim scores a bit less as it will be less visible
393         // to the user.
394         this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
395 
396         this_inconsistency *= kScaling;
397         inconsistency_total += this_inconsistency;
398       }
399       sv2[c] = sv;
400       ssim_total += ssim;
401       ssim2_total += ssim2;
402       dssim_total += dssim;
403 
404       old_ssim_total += ssim_old;
405     }
406     old_ssim_total += 0;
407   }
408 
409   norm = 1. / (width / 4) / (height / 4);
410   ssim_total *= norm;
411   ssim2_total *= norm;
412   m->ssim2 = ssim2_total;
413   m->ssim = ssim_total;
414   if (old_ssim_total == 0) inconsistency_total = 0;
415 
416   m->ssimc = inconsistency_total;
417 
418   m->dssim = dssim_total;
419   return inconsistency_total;
420 }
421 
aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight,uint32_t bd,uint32_t in_bd)422 double aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
423                             const YV12_BUFFER_CONFIG *dest, double *weight,
424                             uint32_t bd, uint32_t in_bd) {
425   assert(bd >= in_bd);
426   const uint32_t shift = bd - in_bd;
427 
428   double abc[3];
429   for (int i = 0; i < 3; ++i) {
430     const int is_uv = i > 0;
431     abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i],
432                               source->strides[is_uv], dest->strides[is_uv],
433                               source->crop_widths[is_uv],
434                               source->crop_heights[is_uv], in_bd, shift);
435   }
436 
437   *weight = 1;
438   return abc[0] * .8 + .1 * (abc[1] + abc[2]);
439 }
440