/external/tensorflow/tensorflow/contrib/labeled_tensor/python/ops/ |
D | ops.py | 45 labeled_tensor.axes.remove(axis.name).values())) 49 return core.transpose(indexed, labeled_tensor.axes.keys(), name=scope) 84 if axis_name not in labeled_tensor.axes: 87 (axis_name, labeled_tensor.axes.keys())) 88 axis = labeled_tensor.axes[axis_name] 178 axes_0 = labeled_tensors[0].axes 189 current_shared_axes = labeled_tensor.axes.remove(axis_name) 198 concat_axis_list.append(labeled_tensor.axes[axis_name]) 247 axes_0 = labeled_tensors[0].axes 249 if t.axes != axes_0: [all …]
|
D | io_ops.py | 43 def __init__(self, axes, dtype, default_value=None): argument 44 self._axes = [core.as_axis(a) for a in axes] 49 def axes(self): member in FixedLenFeature 67 shape = [ax.size for ax in labeled_feature.axes] 111 axes = list(serialized.axes.values()) + features[name].axes 112 parsed[name] = core.LabeledTensor(parsed_feature, axes) 147 parsed[name] = core.LabeledTensor(parsed_feature, features[name].axes) 155 def placeholder(dtype, axes, name=None): argument 174 axes = core.Axes([(axis, None) if isinstance(axis, string_types) else axis 175 for axis in axes]) [all …]
|
D | core.py | 206 def __init__(self, axes): argument 217 for axis_data in axes: 280 def __init__(self, tensor, axes): argument 294 if isinstance(axes, Axes): 295 unvalidated_axes = axes 299 for position, axis_like in enumerate(axes): 334 axes = ["('%s', %r)" % (v.name, v.value) for v in self.axes.values()] 335 axes_repr = (',\n' + ' ' * len(' axes=[')).join(axes) 355 def axes(self): member in LabeledTensor 390 if len(key) != len(self.axes): [all …]
|
D | core_test.py | 53 axes = [self.i_7, self.i_7p, self.i_rgb, self.i_range, self.i_unknown] 54 for i, axis_0 in enumerate(axes): 55 for j, axis_1 in enumerate(axes): 66 axes = [self.i_7, self.i_7p, self.i_rgb, self.i_range, self.i_unknown] 67 for axis in axes: 183 alt_lt = core.LabeledTensor(self.lt.tensor, self.lt.axes) 187 alt_lt = core.LabeledTensor(self.lt.tensor, self.lt.axes.values()) 193 list(self.lt.axes.values())[:-1]) 198 list(self.lt.axes.values())[1:-1]) 203 list(self.lt.axes.values())[2:-1]) [all …]
|
D | ops_test.py | 247 self.original_lt.axes.keys(), 248 self.original_lt.axes.values()) 257 [self.original_lt.axes['x'], 'new_dim']) 265 [self.original_lt.axes['x'], 'new_dim']) 272 self.assertEqual(reshape_lt.axes, core.Axes([('y', None), ('z', 1)])) 283 [self.original_lt.axes['x'], ('new_dim', range(new_dim_size))]) 309 for name, axis in self.original_lt.axes.items()] 337 self.assertEqual(len(batch_2_op.axes['batch']), 2) 345 self.assertEqual(len(batch_2_op.axes['batch']), 2) 359 self.assertEqual(batch_2_op.axes['batch'].size, None) [all …]
|
D | sugar.py | 90 axes = [labeled_tensor.axes[n] for n in self._existing_axis_names] 91 if self._existing_axes is not None and self._existing_axes != axes: 94 (axes, self._existing_axes)) 96 self._existing_axes = axes
|
/external/fonttools/Tests/varLib/ |
D | models_test.py | 9 axes = {"wght": (100, 400, 900)} 10 assert normalizeLocation({"wght": 400}, axes) == {'wght': 0.0} 11 assert normalizeLocation({"wght": 100}, axes) == {'wght': -1.0} 12 assert normalizeLocation({"wght": 900}, axes) == {'wght': 1.0} 13 assert normalizeLocation({"wght": 650}, axes) == {'wght': 0.5} 14 assert normalizeLocation({"wght": 1000}, axes) == {'wght': 1.0} 15 assert normalizeLocation({"wght": 0}, axes) == {'wght': -1.0} 17 axes = {"wght": (0, 0, 1000)} 18 assert normalizeLocation({"wght": 0}, axes) == {'wght': 0.0} 19 assert normalizeLocation({"wght": -1}, axes) == {'wght': 0.0} [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | batch_norm_benchmark.py | 68 def build_graph(device, input_shape, axes, num_layers, mode, scale, train): argument 87 if axis in axes: 93 if axis not in axes: 99 mean, variance = nn_impl.moments(tensor, axes, keep_dims=keep_dims) 126 def _run_graph(self, device, input_shape, axes, num_layers, mode, scale, argument 145 outputs = build_graph(device, input_shape, axes, num_layers, mode, scale, 155 (device, len(input_shape), len(axes), num_layers, mode, scale, train, 171 axes=str(axes)).replace(" ", ""), 180 axes = [0, 1, 2] 181 t1 = self._run_graph("cpu", shape, axes, 10, "op", True, False, 5) [all …]
|
D | nn_batchnorm_test.py | 354 def _npSuffStats(self, x, axes, shift, keep_dims): argument 355 axis = tuple(axes) 364 if d in set(axes): 370 def _opSuffStats(self, x, axes, shift, keep_dims): argument 371 return nn_impl.sufficient_statistics(x, axes, shift, keep_dims) 373 def _testSuffStats(self, x_shape, axes, shift, keep_dims, has_shape): argument 375 np_c, np_m, np_v, np_s = self._npSuffStats(x_val, axes, shift, keep_dims) 381 op_c, op_m, op_v, op_s = self._opSuffStats(x, axes, shift, keep_dims) 389 op_c, op_m, op_v, op_s = self._opSuffStats(x, axes, shift, keep_dims) 457 def _unweighted_moments(self, x, axes, keep_dims=False, extra_out_grads=None): argument [all …]
|
D | nn_impl.py | 811 def sufficient_statistics(x, axes, shift=None, keep_dims=None, name=None, argument 837 axes = list(set(axes)) 845 if all(x_shape.dims[d].value is not None for d in axes): 847 for d in axes: 852 math_ops.cast(array_ops.shape(x), x.dtype), axes) 861 m_ss = math_ops.reduce_sum(m_ss, axes, keepdims=keep_dims, name="mean_ss") 862 v_ss = math_ops.reduce_sum(v_ss, axes, keepdims=keep_dims, name="var_ss") 867 def sufficient_statistics_v2(x, axes, shift=None, keepdims=False, name=None): argument 892 x=x, axes=axes, shift=shift, keep_dims=keepdims, name=name) 930 axes, argument [all …]
|
D | math_ops.py | 3174 def reduced_shape(input_shape, axes): argument 3187 axes = axes.numpy() 3188 input_shape[axes] = 1 3192 axes = cast(axes, dtypes.int32) # [1, 2] 3195 axes = (axes + input_rank) % input_rank 3196 axes_shape = array_ops.shape(axes) # [2] 3200 axes 3553 def tensordot(a, b, axes, name=None): argument 3601 def _tensordot_reshape(a, axes, flipped=False): argument 3625 if a.get_shape().is_fully_defined() and isinstance(axes, (list, tuple)): [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | merge.py | 466 def __init__(self, axes, normalize=False, **kwargs): argument 468 if not isinstance(axes, int): 469 if not isinstance(axes, (list, tuple)): 472 if len(axes) != 2: 475 if not isinstance(axes[0], int) or not isinstance(axes[1], int): 478 self.axes = axes 493 if isinstance(self.axes, int): 494 if self.axes < 0: 495 axes = [self.axes % len(shape1), self.axes % len(shape2)] 497 axes = [self.axes] * 2 [all …]
|
/external/guava/guava/src/com/google/common/collect/ |
D | CartesianList.java | 37 private transient final ImmutableList<List<E>> axes; field in CartesianList 53 CartesianList(ImmutableList<List<E>> axes) { in CartesianList() argument 54 this.axes = axes; in CartesianList() 55 int[] axesSizeProduct = new int[axes.size() + 1]; in CartesianList() 56 axesSizeProduct[axes.size()] = 1; in CartesianList() 58 for (int i = axes.size() - 1; i >= 0; i--) { in CartesianList() 60 IntMath.checkedMultiply(axesSizeProduct[i + 1], axes.get(i).size()); in CartesianList() 70 return (index / axesSizeProduct[axis + 1]) % axes.get(axis).size(); in getAxisIndexForProductIndex() 80 return axes.size(); in get() 87 return axes.get(axis).get(axisIndex); in get() [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | reverse_op.cc | 92 std::vector<int64> axes; in Compile() local 93 OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector(1, &axes)); in Compile() 99 for (int d = 0; d < axes.size(); ++d) { in Compile() 101 ctx, (-x_shape.dims() <= axes[d]) && (axes[d] < x_shape.dims()), in Compile() 102 errors::InvalidArgument(axes[d], " is out of range [-", in Compile() 106 if (axes[d] < 0) { in Compile() 107 axes[d] += x_shape.dims(); in Compile() 109 OP_REQUIRES(ctx, !witnessed_axes[axes[d]], in Compile() 110 errors::InvalidArgument("canonicalized axis ", axes[d], in Compile() 112 witnessed_axes[axes[d]] = true; in Compile() [all …]
|
/external/fonttools/Lib/fontTools/varLib/ |
D | plot.py | 25 def _plotLocationsDots(locations, axes, subplot, **kwargs): argument 27 if len(axes) == 1: 29 [loc.get(axes[0], 0)], 35 elif len(axes) == 2: 37 [loc.get(axes[0], 0)], 38 [loc.get(axes[1], 0)], 45 raise AssertionError(len(axes)) 59 axes = sorted(locations[0].keys()) 60 if len(axes) == 1: 62 model, axes[0], fig, cols, rows, names=names, **kwargs [all …]
|
D | __init__.py | 56 def _add_fvar(font, axes, instances): argument 66 assert axes 67 assert isinstance(axes, OrderedDict) 74 for a in axes.values(): 81 fvar.axes.append(axis) 100 inst.coordinates = {axes[k].tag:axes[k].map_backward(v) for k,v in coordinates.items()} 109 def _add_avar(font, axes): argument 116 assert axes 117 assert isinstance(axes, OrderedDict) 124 for axis in axes.values(): [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | reduction_ops_test.cc | 31 Tensor axes(DT_INT32, TensorShape({2})); in ToScalar() local 32 axes.flat<int32>()(0) = 0; in ToScalar() 33 axes.flat<int32>()(1) = 1; in ToScalar() 35 test::graph::Constant(g, axes)); in ToScalar() 43 Tensor axes(DT_INT32, TensorShape({1})); in ColReduce() local 44 axes.flat<int32>()(0) = 0; in ColReduce() 46 test::graph::Constant(g, axes)); in ColReduce() 54 Tensor axes(DT_INT32, TensorShape({1})); in RowReduce() local 55 axes.flat<int32>()(0) = 1; in RowReduce() 57 test::graph::Constant(g, axes)); in RowReduce() [all …]
|
D | scan_ops_test.cc | 29 Tensor axes(DT_INT32, TensorShape({})); in LargeOneDCumsum() local 30 axes.flat<int32>()(0) = 0; in LargeOneDCumsum() 32 test::graph::Constant(g, axes)); in LargeOneDCumsum() 40 Tensor axes(DT_INT32, TensorShape({})); in ColCumsum() local 41 axes.flat<int32>()(0) = 0; in ColCumsum() 43 test::graph::Constant(g, axes)); in ColCumsum() 51 Tensor axes(DT_INT32, TensorShape({})); in RowCumsum() local 52 axes.flat<int32>()(0) = 1; in RowCumsum() 54 test::graph::Constant(g, axes)); in RowCumsum() 62 Tensor axes(DT_INT32, TensorShape({})); in ThreeDYCumsum() local [all …]
|
/external/libvpx/libvpx/tools/non_greedy_mv/ |
D | non_greedy_mv.py | 144 fig, axes = plt.subplots(2, 2) variable 146 axes[0][0].imshow(img) 147 draw_mv_ls(axes[0][0], mv_ls) 148 draw_pred_block_ls(axes[0][0], mv_ls, bs, mode=0) 150 axes[0][0].set_ylim(img.shape[0], 0) 151 axes[0][0].set_xlim(0, img.shape[1]) 154 axes[0][1].imshow(ref) 155 draw_mv_ls(axes[0][1], mv_ls, mode=1) 156 draw_pred_block_ls(axes[0][1], mv_ls, bs, mode=1) 158 axes[0][1].set_ylim(ref.shape[0], 0) [all …]
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | shampoo_test.py | 193 np.tensordot(grad_np, grad_np, axes=([1, 2], [1, 2])) / 197 np.tensordot(grad_np, grad_np, axes=([0, 2], [0, 2])) / 201 np.tensordot(grad_np, grad_np, axes=([0, 1], [0, 1])) / 205 precond_grad = np.tensordot(grad_np, mat_g1_a, axes=([0], [0])) 206 precond_grad = np.tensordot(precond_grad, mat_g2_a, axes=([0], [0])) 207 precond_grad = np.tensordot(precond_grad, mat_g3_a, axes=([0], [0])) 218 np.tensordot(grad_np_2, grad_np_2, axes=([1, 2], [1, 2])) / 222 np.tensordot(grad_np_2, grad_np_2, axes=([0, 2], [0, 2])) / 226 np.tensordot(grad_np_2, grad_np_2, axes=([0, 1], [0, 1])) / 230 precond_grad = np.tensordot(grad_np_2, mat_g1_a, axes=([0], [0])) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | tensordot_op_test.py | 113 for axes in ([1], [0]), 1: 116 output = math_ops.tensordot(a, b, axes) 120 output = math_ops.tensordot(a, b, axes) 130 output = math_ops.tensordot(a, b, axes) 172 np_ans = np.tensordot(a_np, b_np, axes=(a_dims_np, b_dims_np)) 177 axes = array_ops.placeholder(dtypes.int32) 178 c = math_ops.tensordot(a, b, axes) 183 axes: (a_dims_np, b_dims_np) 207 for axes in all_axes: 208 np_ans = np.tensordot(a_np, b_np, axes=axes) [all …]
|
/external/fonttools/Lib/fontTools/ttLib/tables/ |
D | _f_v_a_r.py | 46 self.axes = [] 50 instanceSize = sstruct.calcsize(FVAR_INSTANCE_FORMAT) + (len(self.axes) * 4) 59 "axisCount": len(self.axes), 65 result.extend([axis.compile() for axis in self.axes]) 66 axisTags = [axis.axisTag for axis in self.axes] 82 self.axes.append(axis) 85 axisTags = [axis.axisTag for axis in self.axes] 93 for axis in self.axes: 102 self.axes.append(axis) 201 for axis in ttFont["fvar"].axes:
|
D | TupleVariation.py | 33 def __init__(self, axes, coordinates): argument 34 self.axes = axes.copy() 38 axes = ",".join(sorted(["%s=%s" % (name, value) for (name, value) in self.axes.items()])) 39 return "<TupleVariation %s %s>" % (axes, self.coordinates) 42 return self.coordinates == other.coordinates and self.axes == other.axes 66 value = self.axes.get(axis) 111 self.axes[axis] = (minValue, value, maxValue) 129 …assert all(tag in axisTags for tag in self.axes.keys()), ("Unknown axis tag found.", self.axes.key… 160 _minValue, value, _maxValue = self.axes.get(axis, (0.0, 0.0, 0.0)) 167 minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0)) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | input_spec.py | 56 axes=None): argument 65 self.axes = axes or {} 73 ('axes=' + str(self.axes)) if self.axes else ''] 149 if spec.axes: 152 for axis, value in spec.axes.items():
|
/external/fonttools/Tests/ttLib/tables/ |
D | TupleVariation_test.py | 88 axes = {"wght":(0.0, 1.0, 1.0)} 89 var = TupleVariation(axes, [(0,0), (9,8), (7,6)]) 93 axes = {"wght":(0.0, 1.0, 1.0)} 94 var = TupleVariation(axes, [(0,0), (0,0), (0,0)]) 98 axes = {"wght":(0.0, 1.0, 1.0)} 99 var = TupleVariation(axes, [None, None, None]) 149 axes = {"wght":(0.0, 1.0, 1.0)} 150 g = TupleVariation(axes, [None] * 5) 176 self.assertEqual(AXES, g.axes) 188 self.assertEqual(AXES, g.axes) [all …]
|