/external/tensorflow/tensorflow/lite/kernels/ |
D | unidirectional_sequence_rnn_test.cc | 285 float* batch_end = batch_start + input_sequence_size; in TEST() local 286 rnn.SetInput(0, batch_start, batch_end); in TEST() 287 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST() 310 float* batch_end = batch_start + input_sequence_size; in TEST() local 311 rnn.SetInput(0, batch_start, batch_end); in TEST() 312 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST() 336 float* batch_end = batch_start + input_sequence_size; in TEST() local 337 rnn.SetInput(0, batch_start, batch_end); in TEST() 338 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST() 362 float* batch_end = batch_start + rnn.input_size(); in TEST() local [all …]
|
D | bidirectional_sequence_rnn_test.cc | 800 float* batch_end = batch_start + input_sequence_size; in TEST() local 801 rnn.SetInput(0, batch_start, batch_end); in TEST() 802 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST() 842 float* batch_end = batch_start + rnn.input_size(); in TEST() local 844 rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); in TEST() 845 rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); in TEST() 876 float* batch_end = batch_start + input_sequence_size; in TEST() local 877 rnn.SetInput(0, batch_start, batch_end); in TEST() 878 rnn.SetInput(input_sequence_size, batch_start, batch_end); in TEST() 918 float* batch_end = batch_start + rnn.input_size(); in TEST() local [all …]
|
D | basic_rnn_test.cc | 269 float* batch_end = batch_start + rnn.input_size(); in TEST() local 270 rnn.SetInput(0, batch_start, batch_end); in TEST() 271 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST() 296 float* batch_end = batch_start + rnn.input_size(); in TEST() local 297 rnn.SetInput(0, batch_start, batch_end); in TEST() 298 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST() 324 float* batch_end = batch_start + rnn.input_size(); in TEST() local 325 rnn.SetInput(0, batch_start, batch_end); in TEST() 326 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST()
|
D | svdf_test.cc | 247 float* batch_end = batch_start + svdf_input_size * svdf_num_batches; in VerifyGoldens() local 248 svdf->SetInput(0, batch_start, batch_end); in VerifyGoldens()
|
D | fully_connected_test.cc | 863 float* batch_end = batch_start + m.input_size(); in TEST_P() local 864 m.SetInput(0, batch_start, batch_end); in TEST_P() 865 m.SetInput(m.input_size(), batch_start, batch_end); in TEST_P()
|
D | unidirectional_sequence_lstm_test.cc | 356 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() local 359 batch_end); in VerifyGoldens() 365 const float* batch_end = batch_start + input_sequence_size * num_inputs; in VerifyGoldens() local 368 batch_end); in VerifyGoldens()
|
D | lstm_test.cc | 380 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() local 382 lstm->SetInput(b * lstm->num_inputs(), batch_start, batch_end); in VerifyGoldens() 1778 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() local 1781 batch_start, batch_end); in VerifyGoldens()
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_arrays.py | 326 for batch_index, (batch_start, batch_end) in enumerate(batches): 327 batch_ids = index_array[batch_start:batch_end] 359 aggregator.aggregate(batch_outs, batch_start, batch_end)
|
D | training_utils.py | 76 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 100 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 105 self.results[0] += batch_outs[0] * (batch_end - batch_start) 130 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 136 self.results[i][batch_start:batch_end] = batch_out
|
D | training_generator.py | 487 for (batch_start, batch_end) in batches: 488 batch_ids = index_array[batch_start:batch_end]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | matrix_band_part_op.cc | 154 const int64 batch_end = (end + m - 1) / m; in operator ()() local 155 for (int64 batch = batch_begin; batch < batch_end; ++batch) { in operator ()()
|
/external/libtextclassifier/annotator/ |
D | annotator.cc | 2170 const int batch_end = in ModelClickContextScoreChunks() local 2176 for (int click_pos = batch_start; click_pos < batch_end; ++click_pos) { in ModelClickContextScoreChunks() 2182 const int batch_size = batch_end - batch_start; in ModelClickContextScoreChunks() 2199 for (int click_pos = batch_start; click_pos < batch_end; ++click_pos) { in ModelClickContextScoreChunks() 2281 const int batch_end = std::min(batch_start + max_batch_size, in ModelBoundsSensitiveScoreChunks() local 2287 for (int i = batch_start; i < batch_end; ++i) { in ModelBoundsSensitiveScoreChunks() 2293 const int batch_size = batch_end - batch_start; in ModelBoundsSensitiveScoreChunks() 2309 for (int i = batch_start; i < batch_end; ++i) { in ModelBoundsSensitiveScoreChunks()
|
/external/tensorflow/tensorflow/lite/delegates/nnapi/ |
D | nnapi_delegate_test.cc | 1971 float* batch_end = batch_start + rnn.input_size(); in TEST() local 1972 rnn.SetInput(0, batch_start, batch_end); in TEST() 1973 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST() 2176 float* batch_end = batch_start + svdf_input_size * svdf_num_batches; in VerifyGoldens() local 2177 svdf->SetInput(0, batch_start, batch_end); in VerifyGoldens() 2498 const float* batch_end = batch_start + num_inputs; in VerifyGoldens() local 2500 lstm->SetInput(b * lstm->num_inputs(), batch_start, batch_end); in VerifyGoldens()
|
/external/tensorflow/tensorflow/contrib/tpu/python/tpu/ |
D | keras_support.py | 1793 for batch_index, (batch_start, batch_end) in enumerate(batches): 1794 batch_ids = index_array[batch_start:batch_end]
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | metric_ops_test.py | 7232 batch_start, batch_end = idx, idx + batch_size 7236 labels_t: labels[batch_start:batch_end], 7237 predictions_t: predictions[batch_start:batch_end], 7238 weights_t: weights[batch_start:batch_end]
|