/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ApplyAdaMax.pbtxt | 35 name: "beta1" 74 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 76 variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
|
D | api_def_ResourceApplyAdaMax.pbtxt | 35 name: "beta1" 68 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 70 variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
|
D | api_def_ResourceApplyPowerSign.pbtxt | 55 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
D | api_def_ResourceApplyAddSign.pbtxt | 55 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
D | api_def_ApplyAddSign.pbtxt | 61 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
D | api_def_ApplyPowerSign.pbtxt | 61 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | nadam_optimizer_test.py | 38 beta1=0.9, argument 41 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 43 m_t = beta1 * m + (1 - beta1) * g_t 46 m_bar = (1 - beta1) * g_t + beta1 * m_t
|
D | adamax_test.py | 43 beta1=0.9, argument 46 m_t = beta1 * m + (1 - beta1) * g_t 48 param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon)) 59 beta1=0.9, argument 63 m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t 65 param_t_slice = param[indices] - ((alpha / (1 - beta1**t)) *
|
D | ggt.py | 43 beta1=0.9, argument 112 self._set_hyper("beta1", beta1) 218 beta1 = state.get_hyper("beta1", dtype=var_dtype) 222 update_moment1 = moment1.assign(beta1 * moment1 + (1. - beta1) * flat_grad)
|
D | weight_decay_optimizers_test.py | 37 def adamw_update_numpy(param, g_t, t, m, v, lr=0.001, beta1=0.9, argument 39 lr_t = lr * np.sqrt(1 - beta2**t) / (1 - beta1**t) 41 m_t = beta1 * m + (1 - beta1) * g_t
|
D | lazy_adam_optimizer_test.py | 44 beta1=0.9, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 m_t = beta1 * m + (1 - beta1) * g_t 187 beta1 = lambda: 0.9 function 192 beta1 = beta1()
|
D | adam_gs_optimizer.py | 43 beta1=0.9, argument 107 self._beta1 = beta1 131 beta1 = self._call_if_callable(self._beta1) 136 self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
|
D | adam_gs_optimizer_test.py | 44 beta1=0.9, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 m_t = beta1 * m + (1 - beta1) * g_t 192 beta1 = lambda: 0.9 function 197 beta1 = beta1()
|
D | lazy_adam_gs_optimizer_test.py | 44 beta1=0.9, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 m_t = beta1 * m + (1 - beta1) * g_t 211 beta1 = lambda: 0.9 function 216 beta1 = beta1()
|
D | weight_decay_optimizers.py | 359 def __init__(self, weight_decay, learning_rate=0.001, beta1=0.9, beta2=0.999, argument 380 weight_decay, learning_rate=learning_rate, beta1=beta1, beta2=beta2,
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | nadam_test.py | 43 def update_m_cache(m_cache, t, beta1=0.9): argument 44 mu_t = beta1 * (1 - 0.5 * 0.96**(0.004 * (t + 1))) 56 beta1=0.9, argument 60 mu_t = beta1 * (1 - 0.5 * 0.96**(0.004 * (t + 1))) 61 mu_t_1 = beta1 * (1 - 0.5 * 0.96**(0.004 * (t + 2))) 64 m_t = beta1 * m + (1 - beta1) * g_t
|
D | adam_test.py | 44 beta1=0.9, argument 47 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 49 m_t = beta1 * m + (1 - beta1) * g_t 63 beta1=0.9, argument 66 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 68 m_t = beta1 * m + (1 - beta1) * g_t 84 beta1=0.9, argument 89 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 90 m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t 221 beta1 = lambda: 0.9 function [all …]
|
D | adamax_test.py | 42 beta1=0.9, argument 45 m_t = beta1 * m + (1 - beta1) * g_t 47 param_t = param - (alpha / (1 - beta1**(t + 1))) * (m_t / (v_t + epsilon)) 58 beta1=0.9, argument 62 m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t 65 (alpha / (1 - beta1**(t + 1))) * (m_t_slice / (v_t_slice + epsilon)))
|
/external/tensorflow/tensorflow/core/kernels/ |
D | training_ops_gpu.cu.cc | 132 typename TTypes<T>::ConstScalar beta1, in operator ()() 141 m + (beta1.constant(one) - beta1).reshape(single).broadcast(bcast) * in operator ()() 153 (m * beta1.reshape(single).broadcast(bcast) + in operator ()() 154 (beta1.constant(one) - beta1).reshape(single).broadcast(bcast) * in operator ()() 176 typename TTypes<T>::ConstScalar beta1, in operator ()() 185 m + (beta1.constant(one) - beta1).reshape(single).broadcast(bcast) * in operator ()() 207 typename TTypes<T>::ConstScalar beta1, in operator ()() 216 m + (beta1.constant(one) - beta1).reshape(single).broadcast(bcast) * in operator ()()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | adamax_test.py | 39 beta1=0.9, argument 42 m_t = beta1 * m + (1 - beta1) * g_t 44 param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon))
|
D | adam_test.py | 40 beta1=0.9, argument 43 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 45 m_t = beta1 * m + (1 - beta1) * g_t
|
/external/tensorflow/tensorflow/python/training/ |
D | training_ops_test.py | 276 beta1 = np.array(0.9, dtype=var.dtype) 278 beta1_power = beta1**t 282 beta1_t = constant_op.constant(beta1, self._toType(var.dtype), []) 291 new_var, _, _ = self._adamUpdateNumpy(var, grad, t, m, v, lr, beta1, 300 def _adamUpdateNumpy(self, param, g_t, t, m, v, alpha, beta1, beta2, epsilon): argument 301 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 303 m_t = beta1 * m + (1 - beta1) * g_t
|
D | adam_test.py | 43 beta1=0.9, argument 46 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 48 m_t = beta1 * m + (1 - beta1) * g_t 183 beta1 = lambda: 0.9 function 188 beta1 = beta1()
|
D | adam.py | 41 beta1=0.9, argument 99 self._beta1 = beta1 136 beta1 = self._call_if_callable(self._beta1) 141 self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_embedding.py | 153 beta1=0.9, argument 179 if beta1 < 0. or beta1 >= 1.: 180 raise ValueError('beta1 must be between 0. and 1; got {}.'.format(beta1)) 189 self.beta1 = beta1 880 table_descriptor.optimization_parameters.adam.beta1 = ( 881 self._optimization_parameters.beta1)
|