/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | adam_test.py | 45 beta2=0.999, argument 47 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 64 beta2=0.999, argument 66 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 69 v_t = beta2 * v + (1 - beta2) * g_t * g_t 85 beta2=0.999, argument 89 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 91 v_t_slice = beta2 * v[indices] + (1 - beta2) * g_t * g_t 222 beta2 = lambda: 0.999 function [all …]
|
D | nadam_test.py | 57 beta2=0.999, argument 65 v_t = beta2 * v + (1 - beta2) * g_t * g_t 68 v_prime_t = v_t / (1 - beta2**(t + 1))
|
D | adamax_test.py | 43 beta2=0.999, argument 46 v_t = np.maximum(beta2 * v, np.abs(g_t)) 59 beta2=0.999, argument 63 v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t))
|
/external/tensorflow/tensorflow/python/training/ |
D | training_ops_test.py | 277 beta2 = np.array(0.999, dtype=var.dtype) 279 beta2_power = beta2**t 283 beta2_t = constant_op.constant(beta2, self._toType(var.dtype), []) 292 beta2, epsilon) 300 def _adamUpdateNumpy(self, param, g_t, t, m, v, alpha, beta1, beta2, epsilon): argument 301 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 304 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
D | adam_test.py | 44 beta2=0.999, argument 46 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 v_t = beta2 * v + (1 - beta2) * g_t * g_t 184 beta2 = lambda: 0.999 function 189 beta2 = beta2()
|
D | adam.py | 42 beta2=0.999, argument 100 self._beta2 = beta2 137 beta2 = self._call_if_callable(self._beta2) 142 self._beta2_t = ops.convert_to_tensor(beta2, name="beta2")
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | nadam_optimizer_test.py | 39 beta2=0.999, argument 41 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 44 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
D | weight_decay_optimizers_test.py | 38 beta2=0.999, epsilon=1e-8): argument 39 lr_t = lr * np.sqrt(1 - beta2**t) / (1 - beta1**t) 42 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
D | lazy_adam_optimizer_test.py | 45 beta2=0.999, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 188 beta2 = lambda: 0.999 function 193 beta2 = beta2()
|
D | adam_gs_optimizer.py | 44 beta2=0.999, argument 108 self._beta2 = beta2 132 beta2 = self._call_if_callable(self._beta2) 137 self._beta2_t = ops.convert_to_tensor(beta2, name="beta2")
|
D | adam_gs_optimizer_test.py | 45 beta2=0.999, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 193 beta2 = lambda: 0.999 function 198 beta2 = beta2()
|
D | lazy_adam_gs_optimizer_test.py | 45 beta2=0.999, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 212 beta2 = lambda: 0.999 function 217 beta2 = beta2()
|
D | weight_decay_optimizers.py | 359 def __init__(self, weight_decay, learning_rate=0.001, beta1=0.9, beta2=0.999, argument 380 weight_decay, learning_rate=learning_rate, beta1=beta1, beta2=beta2,
|
D | adamax_test.py | 44 beta2=0.999, argument 47 v_t = np.maximum(beta2 * v, np.abs(g_t)) 60 beta2=0.999, argument 64 v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t))
|
D | adamax.py | 40 def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, argument 86 super(AdaMaxOptimizer, self).__init__(learning_rate, beta1, beta2,
|
/external/tensorflow/tensorflow/core/kernels/ |
D | training_ops_gpu.cu.cc | 133 typename TTypes<T>::ConstScalar beta2, in operator ()() 144 v + (beta2.constant(one) - beta2).reshape(single).broadcast(bcast) * in operator ()() 177 typename TTypes<T>::ConstScalar beta2, in operator ()() 188 v + (beta2.constant(one) - beta2).reshape(single).broadcast(bcast) * in operator ()() 208 typename TTypes<T>::ConstScalar beta2, in operator ()() 219 (beta2.reshape(single).broadcast(bcast) * v).cwiseMax(grad.abs()); in operator ()()
|
D | training_ops.h | 146 typename TTypes<T>::ConstScalar beta2, 160 typename TTypes<T>::ConstScalar beta2, 172 typename TTypes<T>::ConstScalar beta2,
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | adam_test.py | 41 beta2=0.999, argument 43 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 46 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
D | adamax_test.py | 40 beta2=0.999, argument 43 v_t = np.maximum(beta2 * v, np.abs(g_t))
|
/external/speex/libspeexdsp/ |
D | scal.c | 156 float beta, beta2; in speex_decorrelate() local 186 beta2 = beta; in speex_decorrelate() 205 if (max_alpha > .98/(1.+beta2)) in speex_decorrelate() 206 max_alpha = .98/(1.+beta2); in speex_decorrelate()
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_embedding.py | 154 beta2=0.999, argument 181 if beta2 < 0. or beta2 >= 1.: 182 raise ValueError('beta2 must be between 0. and 1; got {}.'.format(beta2)) 190 self.beta2 = beta2 882 table_descriptor.optimization_parameters.adam.beta2 = ( 883 self._optimization_parameters.beta2)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ApplyAdaMax.pbtxt | 41 name: "beta2" 75 v_t <- max(beta2 * v_{t-1}, abs(g))
|
D | api_def_ResourceApplyAdaMax.pbtxt | 41 name: "beta2" 69 v_t <- max(beta2 * v_{t-1}, abs(g))
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | adam_test.py | 44 beta2=0.999, argument 46 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
D | adam.py | 37 def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, argument 94 self._set_hyper("beta2", beta2)
|