/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | sampling_ops.py | 31 def _rank_resample(weights, biases, inputs, sampled_values, num_resampled, argument 99 embedding_ops.embedding_lookup(biases, sampled, partition_strategy), [-1]) 111 biases, argument 219 weights, biases, labels, inputs, sampled_values, resampling_temperature 230 resampled_values = _rank_resample(weights, biases, inputs, sampled_values, 235 biases=biases, 248 biases, argument 323 biases=biases,
|
D | sampling_ops_test.py | 155 biases=self._biases(), 174 biases=self._biases(), 192 biases=self._biases(), 204 def _testCompareWithNN(self, weights, biases, partition_strategy): argument 208 biases=biases(), 221 biases=biases(), 275 biases = constant_op.constant([0., 0.]) 280 biases=biases, 293 biases=biases,
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist.py | 62 biases = tf.Variable(tf.zeros([hidden1_units]), 64 hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases) 71 biases = tf.Variable(tf.zeros([hidden2_units]), 73 hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases) 80 biases = tf.Variable(tf.zeros([NUM_CLASSES]), 82 logits = tf.matmul(hidden2, weights) + biases
|
D | mnist_with_summaries.py | 92 biases = bias_variable([output_dim]) 93 variable_summaries(biases) 95 preactivate = tf.matmul(input_tensor, weights) + biases
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | bidirectional_sequence_rnn_test.cc | 631 const std::initializer_list<float> biases = { variable 793 rnn.SetFwBias(biases); in TEST() 794 rnn.SetBwBias(biases); in TEST() 832 rnn.SetFwBias(biases); in TEST() 833 rnn.SetBwBias(biases); in TEST() 869 rnn.SetFwBias(biases); in TEST() 870 rnn.SetBwBias(biases); in TEST() 908 rnn.SetFwBias(biases); in TEST() 909 rnn.SetBwBias(biases); in TEST() 953 rnn.SetFwBias(biases); in TEST() [all …]
|
/external/tensorflow/tensorflow/contrib/model_pruning/examples/cifar10/ |
D | cifar10_pruning.py | 194 biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) 195 pre_activation = tf.nn.bias_add(conv, biases) 216 biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) 217 pre_activation = tf.nn.bias_add(conv, biases) 239 biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) 241 tf.matmul(reshape, pruning.apply_mask(weights, scope)) + biases, 249 biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) 251 tf.matmul(local3, pruning.apply_mask(weights, scope)) + biases, 262 biases = _variable_on_cpu('biases', [NUM_CLASSES], 266 biases,
|
/external/skqp/src/gpu/gradients/ |
D | GrUnrolledBinaryGradientColorizer.fp | 137 // The raster implementation also uses scales and biases, but since they must be calculated 140 SkPMColor4f biases[kMaxIntervals]; 169 bias.store(biases + intervalCount); 177 biases[i] = SK_PMColor4fTRANSPARENT; 183 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], 184 biases[5], biases[6], biases[7],
|
D | GrUnrolledBinaryGradientColorizer.cpp | 333 SkPMColor4f biases[kMaxIntervals]; in Make() local 362 bias.store(biases + intervalCount); in Make() 370 biases[i] = SK_PMColor4fTRANSPARENT; in Make() 376 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], biases[5], in Make() 377 biases[6], biases[7], in Make()
|
/external/skia/src/gpu/gradients/ |
D | GrUnrolledBinaryGradientColorizer.fp | 137 // The raster implementation also uses scales and biases, but since they must be calculated 140 SkPMColor4f biases[kMaxIntervals]; 169 bias.store(biases + intervalCount); 177 biases[i] = SK_PMColor4fTRANSPARENT; 183 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], 184 biases[5], biases[6], biases[7],
|
D | GrUnrolledBinaryGradientColorizer.cpp | 333 SkPMColor4f biases[kMaxIntervals]; in Make() local 362 bias.store(biases + intervalCount); in Make() 370 biases[i] = SK_PMColor4fTRANSPARENT; in Make() 376 scales[6], scales[7], biases[0], biases[1], biases[2], biases[3], biases[4], biases[5], in Make() 377 biases[6], biases[7], in Make()
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/ops/ |
D | cudnn_rnn_ops.py | 225 weights, biases = self._cu_canonical_to_tf_canonical(cu_weights, cu_biases) 226 return weights, biases 238 weights, biases = gen_cudnn_rnn_ops.cudnn_rnn_params_to_canonical( 247 return (weights, biases) 264 biases=cu_biases, 363 biases = tf_canonicals[len(tf_canonicals) // 2:] 367 layer_biases_num = len(biases) // self._num_layers 370 layer_biases = biases[i * layer_biases_num:(i + 1) * layer_biases_num] 394 def _cudnn_to_tf_biases(self, *biases): argument 534 def _cudnn_to_tf_biases(self, *biases): argument [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | losses_ops.py | 37 def mean_squared_error_regressor(tensor_in, labels, weights, biases, name=None): argument 41 predictions = nn.xw_plus_b(tensor_in, weights, biases) 52 biases, argument 77 logits = nn.xw_plus_b(tensor_in, weights, biases)
|
D | ops_test.py | 40 biases = constant_op.constant([0.2, 0.3]) 43 biases, class_weight)
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | nonlinear_test.py | 84 biases = ([regressor.get_variable_value("dnn/hiddenlayer_0/biases")] + 88 self.assertEqual(biases[0].shape, (10,)) 89 self.assertEqual(biases[1].shape, (20,)) 90 self.assertEqual(biases[2].shape, (10,)) 91 self.assertEqual(biases[3].shape, (1,))
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_impl.py | 317 def relu_layer(x, weights, biases, name=None): argument 331 with ops.name_scope(name, "relu_layer", [x, weights, biases]) as name: 334 biases = ops.convert_to_tensor(biases, name="biases") 335 xw_plus_b = nn_ops.bias_add(math_ops.matmul(x, weights), biases) 1369 biases, argument 1434 weights + [biases, inputs, labels]): 1485 biases, all_ids, partition_strategy=partition_strategy) 1555 biases, argument 1645 biases, 1659 biases, argument [all …]
|
D | nn_test.py | 538 biases = np.random.randn(num_classes).astype(np.float32) 545 sampled_w, sampled_b = weights[sampled], biases[sampled] 546 true_w, true_b = weights[labels], biases[labels] 564 return weights, biases, hidden_acts, sampled_vals, exp_logits, exp_labels 566 def _ShardTestEmbeddings(self, weights, biases, num_shards): argument 586 initializer=constant_op.constant(biases)) 599 (weights, biases, hidden_acts, sampled_vals, exp_logits, 610 biases=constant_op.constant(biases), 635 (weights, biases, hidden_acts, sampled_vals, exp_logits, 646 biases=constant_op.constant(biases), [all …]
|
/external/tensorflow/tensorflow/contrib/factorization/examples/ |
D | mnist.py | 159 biases = tf.Variable(tf.zeros([hidden1_units]), 161 hidden1 = tf.nn.relu(tf.matmul(all_scores, weights) + biases) 168 biases = tf.Variable(tf.zeros([hidden2_units]), 170 hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases) 177 biases = tf.Variable(tf.zeros([NUM_CLASSES]), 179 logits = tf.matmul(hidden2, weights) + biases
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | step_fn_test.py | 57 weights, biases = [], [] 61 biases.append(self.evaluate(layer.bias)) 63 error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1)
|
D | optimizer_v2_test.py | 58 weights, biases = [], [] 63 biases.append(self.evaluate(layer.bias)) 65 error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1)
|
D | minimize_loss_test.py | 81 weights, biases = [], [] 85 biases.append(self.evaluate(layer.bias)) 87 error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1) 114 weights, biases = [], [] 119 biases.append(self.evaluate(layer.bias)) 121 error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1) 455 weights, biases, losses = [], [], [] 460 biases.append(self.evaluate(layer.bias)) 466 numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_CudnnRNNCanonicalToParams.pbtxt | 10 biases. 18 biases: the canonical form of biases that can be used for saving
|
D | api_def_CudnnRNNParamsToCanonical.pbtxt | 10 biases. 21 biases: the canonical form of biases that can be used for saving
|
/external/tensorflow/tensorflow/examples/udacity/ |
D | 2_fullyconnected.ipynb | 262 " # normal distribution. The biases get initialized to zero.\n", 265 " biases = tf.Variable(tf.zeros([num_labels]))\n", 268 " # We multiply the inputs with the weight matrix, and add biases. We compute\n", 272 " logits = tf.matmul(tf_train_dataset, weights) + biases\n", 285 " tf.matmul(tf_valid_dataset, weights) + biases)\n", 286 " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)" 346 " # biases. \n", 446 " biases = tf.Variable(tf.zeros([num_labels]))\n", 449 " logits = tf.matmul(tf_train_dataset, weights) + biases\n", 459 " tf.matmul(tf_valid_dataset, weights) + biases)\n", [all …]
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | training_test.py | 486 biases = variables_lib.get_variables_by_name('biases') 489 total_loss, optimizer, variables_to_train=biases) 530 weights, biases = variables_lib.get_variables() 536 total_loss, optimizer, variables_to_train=[biases]) 543 weights_values, biases_values = session.run([weights, biases]) 550 new_weights, new_biases = session.run([weights, biases]) 561 new_weights, new_biases = session.run([weights, biases]) 571 new_weights, new_biases = session.run([weights, biases])
|
/external/tensorflow/tensorflow/core/profiler/g3doc/ |
D | command_line.md | 229 pool_logit/biases (10, 10/10 params) 250 pool_logit/biases (10, 10/20 params) 251 pool_logit/biases/Momentum (10, 10/10 params) 289 entry.name = 'pool_logit/biases' 311 pool_logit/biases (10, 10/10 params) 335 pool_logit/biases (10, 10/20 params)
|