/external/tensorflow/tensorflow/compiler/xla/client/ |
D | xla_builder.h | 334 const absl::Span<const int64> broadcast_dimensions); 603 absl::Span<const int64> broadcast_dimensions, 614 absl::Span<const int64> broadcast_dimensions); 720 const absl::Span<const int64> broadcast_dimensions); 762 absl::Span<const int64> broadcast_dimensions); 764 absl::Span<const int64> broadcast_dimensions); 766 absl::Span<const int64> broadcast_dimensions); 768 absl::Span<const int64> broadcast_dimensions); 770 absl::Span<const int64> broadcast_dimensions); 772 absl::Span<const int64> broadcast_dimensions); [all …]
|
D | xla_builder.cc | 420 absl::Span<const int64> broadcast_dimensions) { in InDimBroadcast() argument 425 for (int64 dim : broadcast_dimensions) { in InDimBroadcast() 448 std::vector<int64> broadcast_dimensions; in AddBroadcastSequence() local 452 broadcast_dimensions.push_back(i); in AddBroadcastSequence() 468 broadcast_dimensions); in AddBroadcastSequence() 483 absl::Span<const int64> broadcast_dimensions, in BinaryOp() argument 491 binop, lhs_shape, rhs_shape, broadcast_dimensions)); in BinaryOp() 511 if (!broadcast_dimensions.empty() && lhs_rank != rhs_rank) { in BinaryOp() 523 int64 to_dim = broadcast_dimensions[from_dim]; in BinaryOp() 532 InDimBroadcast(broadcasted_shape, from, broadcast_dimensions)); in BinaryOp() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | shape_inference.cc | 745 absl::Span<const int64> broadcast_dimensions) { in InferInDimBroadcastShape() argument 746 if (broadcast_dimensions.empty() && !ShapeUtil::IsScalar(smaller_shape)) { in InferInDimBroadcastShape() 753 } else if (broadcast_dimensions.size() != smaller_shape.rank()) { in InferInDimBroadcastShape() 759 smaller_shape.rank(), broadcast_dimensions.size()); in InferInDimBroadcastShape() 805 int64 dimension_to_match = broadcast_dimensions.at(i); in InferInDimBroadcastShape() 847 if (i > 0 && broadcast_dimensions.at(i - 1) >= dimension_to_match) { in InferInDimBroadcastShape() 850 dimension_to_match, broadcast_dimensions.at(i - 1)); in InferInDimBroadcastShape() 862 absl::Span<const int64> broadcast_dimensions) { in InferElementwiseBinaryOpShape() argument 876 if (!broadcast_dimensions.empty() && in InferElementwiseBinaryOpShape() 877 broadcast_dimensions != identity_dims) { in InferElementwiseBinaryOpShape() [all …]
|
D | shape_inference.h | 58 absl::Span<const int64> broadcast_dimensions); 225 absl::Span<const int64> broadcast_dimensions); 306 absl::Span<const int64> broadcast_dimensions); 334 absl::Span<const int64> broadcast_dimensions);
|
D | hlo_creation_utils.h | 92 absl::Span<const int64> broadcast_dimensions, 218 absl::Span<const int64> broadcast_dimensions);
|
D | hlo_creation_utils.cc | 177 absl::Span<const int64> broadcast_dimensions, in MakeBroadcastHlo() argument 184 broadcast_shape, operand, broadcast_dimensions)); in MakeBroadcastHlo() 439 absl::Span<const int64> broadcast_dimensions) { in BroadcastZeros() argument 443 /*result_shape_bounds=*/broadcast_dimensions); in BroadcastZeros()
|
D | hlo_instruction.cc | 1102 absl::Span<const int64> broadcast_dimensions) { in CreateBroadcast() argument 1104 broadcast_dimensions); in CreateBroadcast() 1135 std::vector<int64> broadcast_dimensions; in CreateBroadcastSequence() local 1139 broadcast_dimensions.push_back(i); in CreateBroadcastSequence() 1159 broadcast_shape, reshaped_operand, broadcast_dimensions); in CreateBroadcastSequence()
|
D | hlo_instruction.h | 663 absl::Span<const int64> broadcast_dimensions);
|
D | hlo_parser.cc | 1156 optional<std::vector<int64>> broadcast_dimensions; in ParseInstructionRhs() local 1158 &broadcast_dimensions}; in ParseInstructionRhs() 1164 shape, operands[0], *broadcast_dimensions)); in ParseInstructionRhs()
|
/external/tensorflow/tensorflow/compiler/xla/python/ |
D | local_computation_builder.cc | 477 absl::Span<const int64> broadcast_dimensions) { in BroadcastInDim() argument 478 return xla::BroadcastInDim(operand.op(), out_dim_sizes, broadcast_dimensions); in BroadcastInDim() 788 absl::Span<const int64> broadcast_dimensions), \ 789 (lhs.op(), rhs.op(), broadcast_dimensions))
|
D | local_computation_builder.h | 245 absl::Span<const int64> broadcast_dimensions); 392 absl::Span<const int64> broadcast_dimensions))
|
D | xla_client_test.py | 260 broadcast_dimensions=(0,)) 271 broadcast_dimensions=(0,)) 282 broadcast_dimensions=(1,)) 293 broadcast_dimensions=(1,)) 948 broadcast_dimensions=(0,)) 956 broadcast_dimensions=(1,))
|
D | xla_client.py | 1104 def BroadcastInDim(self, operand, shape, broadcast_dimensions): argument 1116 return self._client.BroadcastInDim(operand, shape, broadcast_dimensions)
|
/external/tensorflow/tensorflow/compiler/xla/g3doc/ |
D | broadcasting.md | 101 `broadcast_dimensions` argument is given. For example, see
|
D | operation_semantics.md | 1162 <b> `Op(lhs, rhs, broadcast_dimensions)` </b> 1168 The additional `broadcast_dimensions` operand is a slice of integers used to 1170 operand. `broadcast_dimensions` maps the dimensions of the lower-rank shape to 1207 <b> `Op(lhs, rhs, broadcast_dimensions)` </b> 1213 The additional `broadcast_dimensions` operand is a slice of integers specifying
|