/external/apache-commons-math/src/main/java/org/apache/commons/math/random/ |
D | CorrelatedRandomVectorGenerator.java | 98 RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument 102 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator() 108 decompose(covariance, small); in CorrelatedRandomVectorGenerator() 126 public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument 130 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator() 136 decompose(covariance, small); in CorrelatedRandomVectorGenerator() 188 private void decompose(RealMatrix covariance, double small) in decompose() argument 191 int order = covariance.getRowDimension(); in decompose() 192 double[][] c = covariance.getData(); in decompose()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
D | AbstractMultipleLinearRegression.java | 231 protected void validateCovarianceData(double[][] x, double[][] covariance) { in validateCovarianceData() argument 232 if (x.length != covariance.length) { in validateCovarianceData() 234 LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, x.length, covariance.length); in validateCovarianceData() 236 if (covariance.length > 0 && covariance.length != covariance[0].length) { in validateCovarianceData() 239 covariance.length, covariance[0].length); in validateCovarianceData()
|
D | GLSMultipleLinearRegression.java | 56 public void newSampleData(double[] y, double[][] x, double[][] covariance) { in newSampleData() argument 60 validateCovarianceData(x, covariance); in newSampleData() 61 newCovarianceData(covariance); in newSampleData()
|
/external/fonttools/Lib/fontTools/pens/ |
D | statisticsPen.py | 38 self.covariance = 0 62 self.covariance = covariance = self.momentXY / area - meanX*meanY 66 correlation = covariance / (stddevX * stddevY) 69 slant = covariance / varianceY
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | dirichlet_multinomial_test.py | 262 dist.covariance(), 298 covariance = dist.covariance() 301 self.assertEqual([2, 2], covariance.get_shape()) 302 self.assertAllClose(expected_covariance, self.evaluate(covariance)) 335 covariance = dist.covariance() 339 self.assertEqual([4, 3, 3], covariance.get_shape()) 340 self.assertAllClose(expected_covariance, self.evaluate(covariance)) 353 covariance = dist.covariance() 354 covariance2 = dist2.covariance() 355 self.assertEqual([3, 5, 4, 4], covariance.get_shape()) [all …]
|
D | multinomial_test.py | 227 self.assertEqual((3, 3), dist.covariance().get_shape()) 228 self.assertAllClose(expected_covariances, dist.covariance().eval()) 242 self.assertEqual((4, 2, 2, 2), dist.covariance().get_shape()) 243 self.assertAllClose(expected_covariances, dist.covariance().eval()) 258 covariance = dist.covariance() 259 covariance2 = dist2.covariance() 260 self.assertEqual((3, 5, 4, 4), covariance.get_shape()) 297 dist.covariance(), 328 dist.covariance(), 357 dist.covariance(),
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/ |
D | Covariance.java | 166 double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected); in computeCovarianceMatrix() 220 public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected) in covariance() method in Covariance 255 public double covariance(final double[] xArray, final double[] yArray) in covariance() method in Covariance 257 return covariance(xArray, yArray, true); in covariance()
|
D | PearsonsCorrelation.java | 95 public PearsonsCorrelation(Covariance covariance) { in PearsonsCorrelation() argument 96 RealMatrix covarianceMatrix = covariance.getCovarianceMatrix(); in PearsonsCorrelation() 100 nObs = covariance.getN(); in PearsonsCorrelation()
|
/external/tensorflow/tensorflow/contrib/factorization/g3doc/ |
D | gmm.md | 9 parameters, which include the mean, covariance and mixture ratios of the 14 covariance can be either full or diagonal.
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | mvn_full_covariance_test.py | 48 mvn.covariance().eval() 63 mvn.covariance().eval() 107 covariance = self._random_pd_matrix(3, 5, 2, 2) 110 mu, covariance, validate_args=True)
|
D | vector_laplace_diag_test.py | 134 vla.covariance().eval()) 148 vla.covariance().eval()) 162 vla.covariance().eval())
|
D | vector_exponential_diag_test.py | 125 vex.covariance().eval()) 139 vex.covariance().eval()) 153 vex.covariance().eval())
|
D | mvn_diag_test.py | 150 mvn.covariance().eval()) 164 mvn.covariance().eval()) 178 mvn.covariance().eval())
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | math_utils.py | 478 def log_noninformative_covariance_prior(covariance): argument 495 covariance += array_ops.diag(1e-8 * array_ops.ones( 496 shape=[array_ops.shape(covariance)[0]], dtype=covariance.dtype)) 497 power = -(math_ops.cast(array_ops.shape(covariance)[0] + 1, 498 covariance.dtype) / 2.) 499 return power * math_ops.log(linalg_ops.matrix_determinant(covariance)) 502 def entropy_matched_cauchy_scale(covariance): argument 528 array_ops.matrix_diag_part(covariance))
|
D | ar_model.py | 462 covariance = prediction_ops["covariance"] 463 sigma = math_ops.sqrt(gen_math_ops.maximum(covariance, 1e-5)) 698 covariance = prediction_ops["covariance"] 715 covariance = self._scale_back_variance(covariance) 722 predictions={"mean": prediction, "covariance": covariance, 978 covariance = prediction_ops["covariance"] 980 sigma = math_ops.sqrt(gen_math_ops.maximum(covariance, 1e-5))
|
/external/autotest/client/site_tests/video_WebRtcPeerConnectionWithCamera/ |
D | ssim.js | 47 covariance: function(a, b, meanA, meanB) { method in Ssim 76 var sigmaXy = this.covariance(x, y, muX, muY);
|
/external/autotest/client/site_tests/video_WebRtcCamera/ |
D | ssim.js | 47 covariance: function(a, b, meanA, meanB) { method in Ssim 76 var sigmaXy = this.covariance(x, y, muX, muY);
|
/external/ImageMagick/coders/ |
D | dds.c | 1378 static void ComputePrincipleComponent(const float *covariance, in ComputePrincipleComponent() argument 1390 row0.x = covariance[0]; in ComputePrincipleComponent() 1391 row0.y = covariance[1]; in ComputePrincipleComponent() 1392 row0.z = covariance[2]; in ComputePrincipleComponent() 1395 row1.x = covariance[1]; in ComputePrincipleComponent() 1396 row1.y = covariance[3]; in ComputePrincipleComponent() 1397 row1.z = covariance[4]; in ComputePrincipleComponent() 1400 row2.x = covariance[2]; in ComputePrincipleComponent() 1401 row2.y = covariance[4]; in ComputePrincipleComponent() 1402 row2.z = covariance[5]; in ComputePrincipleComponent() [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.-distribution.pbtxt | 55 name: "covariance" 56 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-normal.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-categorical.pbtxt | 68 name: "covariance" 69 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-uniform.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-exponential.pbtxt | 65 name: "covariance" 66 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
D | tensorflow.distributions.-dirichlet.pbtxt | 64 name: "covariance" 65 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'covariance\'], "
|
/external/eigen/doc/ |
D | DenseDecompositionBenchmark.dox | 12 …rices, the reported timmings include the cost to compute the symmetric covariance matrix \f$ A^T A… 30 …oblems, and the reported timing include the cost to form the symmetric covariance matrix \f$ A^T A… 34 …t of Cholesky/LU decompositions is dominated by the computation of the symmetric covariance matrix.
|