/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | mirrored_strategy_multigpu_test.py | 66 distribution=[ 77 def testMinimizeLoss(self, distribution): argument 79 self._test_minimize_loss_eager(distribution) 81 self._test_minimize_loss_graph(distribution) 83 def testReplicaId(self, distribution): argument 84 self._test_replica_id(distribution) 86 def testNumReplicasInSync(self, distribution): argument 87 self.assertEqual(2, distribution.num_replicas_in_sync) 89 def testCallAndMergeExceptions(self, distribution): argument 90 self._test_call_and_merge_exceptions(distribution) [all …]
|
D | one_device_strategy_test.py | 29 distribution=[ 37 def testMinimizeLoss(self, distribution): argument 39 self._test_minimize_loss_eager(distribution) 41 self._test_minimize_loss_graph(distribution) 43 def testReplicaId(self, distribution): argument 44 self._test_replica_id(distribution) 46 def testCallAndMergeExceptions(self, distribution): argument 47 self._test_call_and_merge_exceptions(distribution) 49 def testMakeInputFnIteratorWithDataset(self, distribution): argument 57 iterator = distribution.make_input_fn_iterator(input_fn) [all …]
|
D | metrics_v1_test.py | 77 distribution=[combinations.default_strategy, 87 return combinations.combine(distribution=[combinations.tpu_strategy_one_step, 96 def _test_metric(self, distribution, dataset_fn, metric_fn, expected_fn): argument 97 with ops.Graph().as_default(), distribution.scope(): 98 iterator = distribution.make_input_fn_iterator(lambda _: dataset_fn()) 99 if isinstance(distribution, tpu_strategy.TPUStrategy): 101 value, update = distribution.extended.call_for_each_replica( 104 return distribution.group(update) 106 ctx = distribution.extended.experimental_run_steps_on_iterator( 107 step_fn, iterator, iterations=distribution.extended.steps_per_run) [all …]
|
D | keras_utils_test.py | 75 def test_callbacks_in_fit(self, distribution): argument 76 with distribution.scope(): 80 dataset = keras_test_lib.get_dataset(distribution) 96 if isinstance(distribution, tpu_strategy.TPUStrategy): 99 steps_per_run = distribution.extended.steps_per_run 123 def test_callbacks_in_eval(self, distribution): argument 124 with distribution.scope(): 128 dataset = keras_test_lib.get_dataset(distribution) 142 def test_callbacks_in_predict(self, distribution): argument 143 with distribution.scope(): [all …]
|
D | keras_dnn_correctness_test.py | 32 return combinations.combine(distribution=keras_correctness_test_base. 38 return combinations.combine(distribution=keras_correctness_test_base. 45 def get_model(self, initial_weights=None, distribution=None): argument 46 with keras_correctness_test_base.MaybeDistributionScope(distribution): 78 def test_dnn_correctness(self, distribution, use_numpy, use_validation_data): argument 79 self.run_correctness_test(distribution, use_numpy, use_validation_data) 82 def test_dnn_with_dynamic_learning_rate(self, distribution): argument 83 self.run_dynamic_lr_test(distribution) 89 def get_model(self, distribution=None): argument 90 with distribution.scope(): [all …]
|
D | minimize_loss_test.py | 55 distribution=[combinations.tpu_strategy], 59 def testTrainNetwork(self, distribution, optimizer_fn, use_callable_loss): argument 60 with distribution.scope(): 66 return distribution.group( 67 distribution.extended.call_for_each_replica( 70 iterator = self._get_iterator(distribution, dataset_fn) 73 return distribution.extended.experimental_run_steps_on_iterator( 96 def testTrainNetworkByCallForEachReplica(self, distribution, optimizer_fn, argument 98 with distribution.scope(): 102 iterator = self._get_iterator(distribution, dataset_fn) [all …]
|
D | keras_correctness_test_base.py | 71 combinations.combine(distribution=all_strategies), 88 combinations.combine(distribution= 100 combinations.combine(distribution=tpu_strategies), 107 def __init__(self, distribution): argument 108 self._distribution = distribution 122 def batch_wrapper(dataset, batch_size, distribution, repeat=None): argument 127 if isinstance(distribution, tpu_strategy.TPUStrategy): 133 def get_batch_size(global_batch_size, distribution): argument 137 distribution and 138 not distributed_training_utils.global_batch_size_supported(distribution)) [all …]
|
D | keras_test.py | 196 def batch_wrapper(dataset, batch_size, distribution, repeat=None): argument 201 if isinstance(distribution, tpu_strategy.TPUStrategy): 214 def get_dataset(distribution): argument 219 dataset = batch_wrapper(dataset, 10, distribution) 223 def get_predict_dataset(distribution): argument 227 dataset = batch_wrapper(dataset, 10, distribution) 278 return combinations.combine(distribution=strategies_minus_tpu, 283 return combinations.combine(distribution=tpu_strategies, 293 distribution=[ 341 distribution=[ [all …]
|
D | keras_backward_compat_test.py | 162 def batch_wrapper(dataset, batch_size, distribution, repeat=None): argument 167 if isinstance(distribution, tpu_strategy.TPUStrategy): 180 def get_dataset(distribution): argument 185 dataset = batch_wrapper(dataset, 10, distribution) 189 def get_predict_dataset(distribution): argument 193 dataset = batch_wrapper(dataset, 10, distribution) 307 distribution=strategies_minus_tpu, 313 distribution=tpu_strategies, 339 combinations.combine(distribution=strategies_minus_tpu), 347 combinations.combine(distribution=tpu_strategies), [all …]
|
D | step_fn.py | 28 def __init__(self, distribution): argument 29 self._distribution = distribution 32 def distribution(self): member in Step 53 def __init__(self, dataset_fn, distribution): argument 54 super(StandardInputStep, self).__init__(distribution) 55 self._iterator = distribution.make_input_fn_iterator(lambda _: dataset_fn()) 88 def __init__(self, dataset_fn, loss_fn, optimizer, distribution, argument 90 super(StandardSingleLossStep, self).__init__(dataset_fn, distribution) 102 grads_and_vars = self.distribution.extended.call_for_each_replica( 109 self.distribution, grads_and_vars) [all …]
|
D | moving_averages_test.py | 33 distribution=[combinations.default_strategy, 43 def testReplicaModeWithoutZeroDebias(self, distribution): argument 55 with distribution.scope(), self.cached_session() as sess: 56 var, assign = distribution.extended.call_for_each_replica(replica_fn) 59 sess.run(distribution.experimental_local_results(assign)) 70 def testReplicaMode(self, distribution): argument 81 with distribution.scope(), self.cached_session() as sess: 82 var, assign_op = distribution.extended.call_for_each_replica(replica_fn) 85 sess.run(distribution.experimental_local_results(assign_op)) 92 def testCrossDeviceWithoutZeroDebias(self, distribution): argument [all …]
|
/external/bcc/tools/ |
D | runqlat_example.txt | 12 usecs : count distribution 30 The distribution is bimodal, with one mode between 0 and 15 microseconds, 32 spikes in the ASCII distribution (which is merely a visual representation 49 msecs : count distribution 57 msecs : count distribution 65 msecs : count distribution 73 This shows a similar distribution across the three summaries. 82 msecs : count distribution 90 msecs : count distribution 98 msecs : count distribution [all …]
|
D | hardirqs_example.txt | 192 The distribution of interrupt run time can be printed as a histogram with the -d 200 usecs : count distribution 217 usecs : count distribution 232 usecs : count distribution 248 usecs : count distribution 264 usecs : count distribution 280 usecs : count distribution 296 usecs : count distribution 312 usecs : count distribution 328 usecs : count distribution [all …]
|
D | ext4dist_example.txt | 12 usecs : count distribution 29 usecs : count distribution 37 usecs : count distribution 44 This output shows a bi-modal distribution for read latency, with a faster 71 msecs : count distribution 81 msecs : count distribution 85 msecs : count distribution 91 msecs : count distribution 102 msecs : count distribution 106 msecs : count distribution [all …]
|
D | bitesize_example.txt | 4 The aim of this tool is to show I/O distribution for requested block sizes, by process name. 11 Kbytes : count distribution 17 Kbytes : count distribution 28 Kbytes : count distribution 42 Kbytes : count distribution 48 Kbytes : count distribution 60 Kbytes : count distribution 66 Kbytes : count distribution 72 Kbytes : count distribution 80 Kbytes : count distribution
|
D | cpudist_example.txt | 7 multiple threads), uneven workload distribution, too-granular tasks, and more. 16 usecs : count distribution 36 usecs : count distribution 53 A bimodal distribution is now clearly visible. Most of the time, tasks were 64 usecs : count distribution 91 usecs : count distribution 106 usecs : count distribution 117 usecs : count distribution 130 usecs : count distribution 138 usecs : count distribution [all …]
|
D | xfsdist_example.txt | 12 usecs : count distribution 28 usecs : count distribution 32 This output shows a bi-modal distribution for read latency, with a faster 59 msecs : count distribution 67 msecs : count distribution 73 msecs : count distribution 82 msecs : count distribution 88 msecs : count distribution 97 msecs : count distribution 103 msecs : count distribution [all …]
|
D | runqlen_example.txt | 13 runqlen : count distribution 23 runqlen : count distribution 45 runqlen : count distribution 63 runqlen : count distribution 73 runqlen : count distribution 79 runqlen : count distribution 91 runqlen : count distribution 102 runqlen : count distribution 108 runqlen : count distribution 115 runqlen : count distribution [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | independent.py | 30 from tensorflow.python.ops.distributions import distribution as distribution_lib 108 self, distribution, reinterpreted_batch_ndims=None, argument 130 name = name or "Independent" + distribution.name 131 self._distribution = distribution 135 distribution) 153 distribution._graph_parents), # pylint: disable=protected-access 156 distribution, reinterpreted_batch_ndims, validate_args) 159 def distribution(self): member in Independent 168 batch_shape = self.distribution.batch_shape_tensor() 177 batch_shape = self.distribution.batch_shape [all …]
|
D | batch_reshape.py | 30 from tensorflow.python.ops.distributions import distribution as distribution_lib 85 distribution, argument 116 name = name or "BatchReshape" + distribution.name 121 validate_init_args_statically(distribution, self._batch_shape_unexpanded) 123 distribution.batch_shape_tensor(), self._batch_shape_unexpanded, 125 self._distribution = distribution 130 dtype=distribution.dtype, 131 reparameterization_type=distribution.reparameterization_type, 136 … [self._batch_shape_unexpanded] + distribution._graph_parents), # pylint: disable=protected-access 140 def distribution(self): member in BatchReshape [all …]
|
D | quantized_distribution.py | 28 from tensorflow.python.ops.distributions import distribution as distributions 250 distribution, argument 286 list(distribution.parameters.values()) + 289 self._dist = distribution 296 tensors=[self.distribution, low, high]) 331 def distribution(self): member in QuantizedDistribution 346 return self.distribution.batch_shape_tensor() 349 return self.distribution.batch_shape 352 return self.distribution.event_shape_tensor() 355 return self.distribution.event_shape [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.pbtxt | 5 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 9 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 13 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 17 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 21 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 25 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 29 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 33 mtype: "<class \'tensorflow.python.ops.distributions.distribution.ReparameterizationType\'>" 37 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 41 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" [all …]
|
/external/grpc-grpc/src/python/grpcio_tests/ |
D | commands.py | 107 self.distribution.fetch_build_eggs(self.distribution.install_requires) 108 self.distribution.fetch_build_eggs(self.distribution.tests_require) 182 if self.distribution.install_requires: 183 self.distribution.fetch_build_eggs( 184 self.distribution.install_requires) 185 if self.distribution.tests_require: 186 self.distribution.fetch_build_eggs(self.distribution.tests_require) 220 if self.distribution.install_requires: 221 self.distribution.fetch_build_eggs( 222 self.distribution.install_requires) [all …]
|
/external/python/cpython3/Lib/distutils/command/ |
D | bdist_rpm.py | 206 if not self.distribution.has_ext_modules(): 215 "%s <%s>" % (self.distribution.get_contact(), 216 self.distribution.get_contact_email())) 279 "%s.spec" % self.distribution.get_name()) 290 saved_dist_files = self.distribution.dist_files[:] 297 self.distribution.dist_files = saved_dist_files 369 if self.distribution.has_ext_modules(): 379 self.distribution.dist_files.append( 389 self.distribution.dist_files.append( 401 '%define name ' + self.distribution.get_name(), [all …]
|
/external/python/cpython2/Lib/distutils/command/ |
D | bdist_rpm.py | 215 if not self.distribution.has_ext_modules(): 226 "%s <%s>" % (self.distribution.get_contact(), 227 self.distribution.get_contact_email())) 293 "%s.spec" % self.distribution.get_name()) 304 saved_dist_files = self.distribution.dist_files[:] 311 self.distribution.dist_files = saved_dist_files 383 if self.distribution.has_ext_modules(): 393 self.distribution.dist_files.append( 403 self.distribution.dist_files.append( 416 '%define name ' + self.distribution.get_name(), [all …]
|