/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | distribution_util_test.py | 25 from tensorflow.contrib.distributions.python.ops import distribution_util 113 scale = distribution_util.make_tril_scale(**scale_args) 116 scale = distribution_util.make_tril_scale(**scale_args) 147 scale = distribution_util.make_tril_scale(scale_tril=[[1., 1], [1., 1.]]) 153 scale = distribution_util.make_tril_scale( 160 scale = distribution_util.make_tril_scale( 182 scale = distribution_util.make_diag_scale(**scale_args) 185 scale = distribution_util.make_diag_scale(**scale_args) 209 scale = distribution_util.make_diag_scale( 216 scale = distribution_util.make_diag_scale( [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | conditional_distribution.py | 22 from tensorflow.python.ops.distributions import util as distribution_util unknown 32 @distribution_util.AppendDocstring(kwargs_dict={ 39 @distribution_util.AppendDocstring(kwargs_dict={ 45 @distribution_util.AppendDocstring(kwargs_dict={ 51 @distribution_util.AppendDocstring(kwargs_dict={ 57 @distribution_util.AppendDocstring(kwargs_dict={ 63 @distribution_util.AppendDocstring(kwargs_dict={ 70 @distribution_util.AppendDocstring(kwargs_dict={
|
D | conditional_transformed_distribution.py | 26 from tensorflow.python.ops.distributions import util as distribution_util unknown 52 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) 57 distribution_util.pick_vector(self._needs_rotation, self._empty, [n]), 60 distribution_util.pick_vector(self._needs_rotation, [n], self._empty)) 101 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) 128 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) 152 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) 165 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) 178 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) 192 @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) [all …]
|
D | poisson.py | 30 from tensorflow.python.ops.distributions import util as distribution_util unknown 156 @distribution_util.AppendDocstring(_poisson_sample_note) 160 @distribution_util.AppendDocstring(_poisson_sample_note) 164 @distribution_util.AppendDocstring(_poisson_sample_note) 167 x = distribution_util.embed_check_nonnegative_integer_form(x) 175 x = distribution_util.embed_check_nonnegative_integer_form(x) 184 @distribution_util.AppendDocstring(
|
D | vector_laplace_linear_operator.py | 24 from tensorflow.contrib.distributions.python.ops import distribution_util 214 batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( 239 @distribution_util.AppendDocstring(_mvn_sample_note) 243 @distribution_util.AppendDocstring(_mvn_sample_note) 275 if distribution_util.is_diagonal_scale(self.scale): 281 if distribution_util.is_diagonal_scale(self.scale): 292 if distribution_util.is_diagonal_scale(self.scale):
|
D | vector_exponential_linear_operator.py | 22 from tensorflow.contrib.distributions.python.ops import distribution_util 198 batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( 222 @distribution_util.AppendDocstring(_mvn_sample_note) 226 @distribution_util.AppendDocstring(_mvn_sample_note) 251 if distribution_util.is_diagonal_scale(self.scale): 257 if distribution_util.is_diagonal_scale(self.scale): 268 if distribution_util.is_diagonal_scale(self.scale):
|
D | negative_binomial.py | 29 from tensorflow.python.ops.distributions import util as distribution_util unknown 104 self._logits, self._probs = distribution_util.get_logits_and_probs( 164 seed=distribution_util.gen_new_seed(seed, "negative_binom")) 168 x = distribution_util.embed_check_nonnegative_integer_form(x) 178 x = distribution_util.embed_check_nonnegative_integer_form(x) 184 x = distribution_util.embed_check_nonnegative_integer_form(x)
|
D | binomial.py | 29 from tensorflow.python.ops.distributions import util as distribution_util unknown 188 self._logits, self._probs = distribution_util.get_logits_and_probs( 235 @distribution_util.AppendDocstring(_binomial_sample_note) 239 @distribution_util.AppendDocstring(_binomial_sample_note) 272 @distribution_util.AppendDocstring( 287 distribution_util.assert_integer_form( 296 counts = distribution_util.embed_check_nonnegative_integer_form(counts)
|
D | mvn_linear_operator.py | 21 from tensorflow.contrib.distributions.python.ops import distribution_util 193 batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( 218 @distribution_util.AppendDocstring(_mvn_sample_note) 222 @distribution_util.AppendDocstring(_mvn_sample_note) 246 if distribution_util.is_diagonal_scale(self.scale): 252 if distribution_util.is_diagonal_scale(self.scale): 263 if distribution_util.is_diagonal_scale(self.scale):
|
D | quantized_distribution.py | 29 from tensorflow.python.ops.distributions import util as distribution_util unknown 378 @distribution_util.AppendDocstring(_log_prob_note) 417 @distribution_util.AppendDocstring(_prob_note) 447 @distribution_util.AppendDocstring(_log_cdf_note) 479 @distribution_util.AppendDocstring(_cdf_note) 513 @distribution_util.AppendDocstring(_log_sf_note) 546 @distribution_util.AppendDocstring(_sf_note) 585 dependencies = [distribution_util.assert_integer_form(
|
D | vector_sinh_arcsinh_diag.py | 22 from tensorflow.contrib.distributions.python.ops import distribution_util 198 scale_linop = distribution_util.make_diag_scale( 204 batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( 216 asserts = distribution_util.maybe_check_scalar_distribution(
|
D | inverse_gamma.py | 34 from tensorflow.python.ops.distributions import util as distribution_util unknown 192 @distribution_util.AppendDocstring( 227 @distribution_util.AppendDocstring( 247 @distribution_util.AppendDocstring( 269 @distribution_util.AppendDocstring(
|
D | geometric.py | 33 from tensorflow.python.ops.distributions import util as distribution_util unknown 99 self._logits, self._probs = distribution_util.get_logits_and_probs( 157 x = distribution_util.embed_check_nonnegative_integer_form(x) 170 x = distribution_util.embed_check_nonnegative_integer_form(x)
|
D | vector_student_t.py | 22 from tensorflow.contrib.distributions.python.ops import distribution_util 222 distribution_util.shapes_from_loc_and_scale( 224 override_batch_shape = distribution_util.pick_vector(
|
D | sinh_arcsinh.py | 22 from tensorflow.contrib.distributions.python.ops import distribution_util 158 batch_shape = distribution_util.get_broadcast_shape( 172 asserts = distribution_util.maybe_check_scalar_distribution(
|
D | shape.py | 29 from tensorflow.python.ops.distributions import util as distribution_util unknown 401 event_shape = distribution_util.pick_vector( 404 batch_shape = distribution_util.pick_vector( 409 x = distribution_util.rotate_transpose(x, shift=-1) 441 x = distribution_util.rotate_transpose(x, shift=1)
|
D | poisson_lognormal.py | 23 from tensorflow.contrib.distributions.python.ops import distribution_util 373 distribution_util.pick_vector( 377 seed=distribution_util.gen_new_seed( 383 distribution_util.pick_vector( 456 args_ = [distribution_util.static_value(x) for x in args]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
D | conditional_bijector.py | 22 from tensorflow.python.ops.distributions import util as distribution_util unknown 31 @distribution_util.AppendDocstring(kwargs_dict={ 37 @distribution_util.AppendDocstring(kwargs_dict={ 43 @distribution_util.AppendDocstring(kwargs_dict={ 52 @distribution_util.AppendDocstring(kwargs_dict={
|
D | softplus.py | 27 from tensorflow.python.ops.distributions import util as distribution_util unknown 79 @distribution_util.AppendDocstring( 124 return distribution_util.softplus_inverse(y) 126 return hinge_softness * distribution_util.softplus_inverse(
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | dirichlet_multinomial.py | 30 from tensorflow.python.ops.distributions import util as distribution_util unknown 216 distribution_util.embed_check_nonnegative_integer_form( 274 seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial")) 280 @distribution_util.AppendDocstring(_dirichlet_multinomial_sample_note) 286 return ordered_prob + distribution_util.log_combinations( 289 @distribution_util.AppendDocstring(_dirichlet_multinomial_sample_note) 297 @distribution_util.AppendDocstring( 338 concentration = distribution_util.embed_check_categorical_event_shape( 350 counts = distribution_util.embed_check_nonnegative_integer_form(counts)
|
D | multinomial.py | 31 from tensorflow.python.ops.distributions import util as distribution_util unknown 199 distribution_util.embed_check_nonnegative_integer_form( 201 self._logits, self._probs = distribution_util.get_logits_and_probs( 279 @distribution_util.AppendDocstring(_multinomial_sample_note) 289 return -distribution_util.log_combinations(self.total_count, counts) 311 counts = distribution_util.embed_check_nonnegative_integer_form(counts)
|
D | beta.py | 35 from tensorflow.python.ops.distributions import util as distribution_util unknown 257 seed=distribution_util.gen_new_seed(seed, "beta")) 261 @distribution_util.AppendDocstring(_beta_sample_note) 265 @distribution_util.AppendDocstring(_beta_sample_note) 269 @distribution_util.AppendDocstring(_beta_sample_note) 273 @distribution_util.AppendDocstring(_beta_sample_note) 301 @distribution_util.AppendDocstring(
|
D | categorical.py | 31 from tensorflow.python.ops.distributions import util as distribution_util unknown 195 self._logits, self._probs = distribution_util.get_logits_and_probs( 203 self._logits = distribution_util.embed_check_categorical_event_shape( 287 k = distribution_util.embed_check_integer_casting_closed( 309 k = distribution_util.embed_check_integer_casting_closed(
|
D | dirichlet.py | 32 from tensorflow.python.ops.distributions import util as distribution_util unknown 238 @distribution_util.AppendDocstring(_dirichlet_sample_note) 242 @distribution_util.AppendDocstring(_dirichlet_sample_note) 282 @distribution_util.AppendDocstring(
|
/external/tensorflow/tensorflow/contrib/distributions/ |
D | __init__.py | 38 from tensorflow.contrib.distributions.python.ops.distribution_util import fill_triangular 39 from tensorflow.contrib.distributions.python.ops.distribution_util import fill_triangular_inverse 40 from tensorflow.contrib.distributions.python.ops.distribution_util import matrix_diag_transform 41 …from tensorflow.contrib.distributions.python.ops.distribution_util import reduce_weighted_logsumexp 42 from tensorflow.contrib.distributions.python.ops.distribution_util import softplus_inverse 43 from tensorflow.contrib.distributions.python.ops.distribution_util import tridiag
|