Searched refs:embedding (Results 1 – 25 of 191) sorted by relevance
12345678
/external/tensorflow/tensorflow/core/protobuf/tpu/ |
D | tpu_embedding_configuration.proto | 9 // Description of the various embedding tables. 15 // The embedding dimension (i.e., the width of the embedding table). 19 // Details of the learning algorithm used to update the embedding 25 // Mode. Should the embedding layer program be run for inference (just forward 35 // Number of samples in each batch of embedding layer activations sent to 45 // Sharding strategy of the embedding tables among the hosts. 71 // backward pass on the sparse core is executed only after the embedding 80 // core allowing it to process step N+1 while the embedding gradients for step 83 // is complete. The drawback is that embedding activations for step N+1 do not 84 // observe the embedding gradient updates from step N. This could affect model [all …]
|
D | optimization_parameters.proto | 18 // to the TPU embedding program, a tag must be specified for the learning 22 // must be less than or equal to the number of tables in the TPU embedding 28 // embedding configuration, i.e. a tag cannot be skipped if a different tag 34 // embedding layer would be more optimal if the number_of_unique_tags is as 38 // communicate dynamic learning rates to the TPU embedding program. 89 // the normal version of Adam that updates all parameters in the embedding 202 // Frequency above which an embedding ID is classified as hot. The valid 203 // range for the frequency is [0.0, 1.0]. The frequency of an embedding ID is 205 // number of lookups for the embedding table. 208 // The maximum number of hot IDs for the embedding table. If greater than [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_RecvTPUEmbeddingActivations.pbtxt | 7 A TensorList of embedding activations containing one Tensor per 8 embedding table in the model. 15 embedding tables in the model. 24 summary: "An op that receives embedding activations on the TPU." 26 The TPU system performs the embedding lookups and aggregations specified by
|
D | api_def_SendTPUEmbeddingGradients.pbtxt | 7 A TensorList of gradients with which to update embedding tables. 10 with respect to the embedding activations. The embedding tables are updated 11 from these gradients via the optimizer specified in the TPU embedding 32 summary: "Performs gradient updates of embedding tables."
|
D | api_def_RetrieveTPUEmbeddingStochasticGradientDescentParameters.pbtxt | 10 summary: "Retrieve SGD embedding parameters." 12 An op that retrieves optimization parameters from embedding to host 14 the correct embedding table configuration. For example, this op is
|
D | api_def_LoadTPUEmbeddingStochasticGradientDescentParameters.pbtxt | 10 summary: "Load SGD embedding parameters." 12 An op that loads optimization parameters into HBM for embedding. Must be 14 embedding table configuration. For example, this op is used to install
|
D | api_def_RetrieveTPUEmbeddingMomentumParameters.pbtxt | 16 summary: "Retrieve Momentum embedding parameters." 18 An op that retrieves optimization parameters from embedding to host 20 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingAdagradParameters.pbtxt | 16 summary: "Retrieve Adagrad embedding parameters." 18 An op that retrieves optimization parameters from embedding to host 20 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingProximalAdagradParameters.pbtxt | 16 summary: "Retrieve proximal Adagrad embedding parameters." 18 An op that retrieves optimization parameters from embedding to host 20 the correct embedding table configuration. For example, this op is
|
D | api_def_LoadTPUEmbeddingProximalAdagradParameters.pbtxt | 16 summary: "Load proximal Adagrad embedding parameters." 18 An op that loads optimization parameters into HBM for embedding. Must be 20 embedding table configuration. For example, this op is used to install
|
D | api_def_LoadTPUEmbeddingAdagradParameters.pbtxt | 16 summary: "Load Adagrad embedding parameters." 18 An op that loads optimization parameters into HBM for embedding. Must be 20 embedding table configuration. For example, this op is used to install
|
D | api_def_RetrieveTPUEmbeddingADAMParameters.pbtxt | 22 summary: "Retrieve ADAM embedding parameters." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingFTRLParameters.pbtxt | 22 summary: "Retrieve FTRL embedding parameters." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingAdadeltaParameters.pbtxt | 22 summary: "Retrieve Adadelta embedding parameters." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingRMSPropParameters.pbtxt | 22 summary: "Retrieve RMSProp embedding parameters." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_LoadTPUEmbeddingMomentumParameters.pbtxt | 16 summary: "Load Momentum embedding parameters." 18 An op that loads optimization parameters into HBM for embedding. Must be 20 embedding table configuration. For example, this op is used to install
|
D | api_def_EnqueueTPUEmbeddingSparseTensorBatch.pbtxt | 15 A list of rank 1 Tensors, indices into the embedding tables. 46 A list of string scalars, one for each embedding table that specify 47 how to normalize the embedding activations after weighted summation. 57 A list of integers specifying the identifier of the embedding table 67 to the ith feature. table_ids[i] indicates which embedding table to look up ith
|
D | api_def_RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.pbtxt | 22 summary: "Retrieve proximal Adagrad embedding parameters with debug support." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.pbtxt | 22 summary: "Retrieve Momentum embedding parameters with debug support." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.pbtxt | 22 summary: "Retrieve Adagrad embedding parameters with debug support." 24 An op that retrieves optimization parameters from embedding to host 26 the correct embedding table configuration. For example, this op is
|
D | api_def_LoadTPUEmbeddingADAMParameters.pbtxt | 22 summary: "Load ADAM embedding parameters." 24 An op that loads optimization parameters into HBM for embedding. Must be 26 embedding table configuration. For example, this op is used to install
|
D | api_def_LoadTPUEmbeddingAdadeltaParameters.pbtxt | 22 summary: "Load Adadelta embedding parameters." 24 An op that loads optimization parameters into HBM for embedding. Must be 26 embedding table configuration. For example, this op is used to install
|
/external/u-boot/drivers/spi/ |
D | Kconfig | 25 access the SPI NOR flash on platforms embedding this Altera 33 used to access the SPI flash on AE3XX and AE250 platforms embedding 58 access the SPI NOR flash on platforms embedding this Broadcom 66 access the SPI NOR flash on platforms embedding these Broadcom 73 used to access the SPI NOR flash on platforms embedding this 80 access the SPI NOR flash on platforms embedding this Designware 87 access the SPI NOR flash on platforms embedding this Samsung 94 access the SPI NOR flash and SPI Data flash on platforms embedding 102 access the SPI NOR flash on platforms embedding this Intel 110 used to access the SPI NOR flash on platforms embedding this [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | embedding_ops_test.py | 260 embedding = embedding_ops.embedding_lookup(p, ids) 262 tf_result = embedding.eval(feed_dict=feed_dict) 265 self.assertShapeEqual(np_result, embedding) 273 embedding = embedding_ops.embedding_lookup( 276 self.assertAllEqual(embedding.eval(), [[1.0]]) 284 embedding = embedding_ops.embedding_lookup( 290 self.assertAllEqual(embedding.eval(), 2 * self.evaluate(normalized)) 303 embedding = embedding_ops.embedding_lookup(p_variable, ids) 309 tf_result = embedding.eval(feed_dict=feed_dict) 313 self.assertShapeEqual(np_result, embedding) [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/metric_learning/ |
D | metric_loss_ops_test.py | 99 embedding = np.random.rand(num_data, feat_dim).astype(np.float32) 108 pdist_matrix = pairwise_distance_np(embedding, squared=True) 140 embeddings=ops.convert_to_tensor(embedding), 155 embedding = np.random.rand(num_data, feat_dim).astype(np.float32) 163 pdist_matrix = pairwise_distance_np(embedding) 193 embeddings=ops.convert_to_tensor(embedding), 522 embedding, labels = blobs 523 embedding = (embedding - embedding.mean(axis=0)) / embedding.std(axis=0) 524 embedding = embedding.astype(np.float32) 525 return embedding, labels
|
12345678