/external/libtextclassifier/annotator/ |
D | quantization_test.cc | 41 std::vector<uint8> embeddings{{/*0: */ 0x00, 0xFF, 0x09, 0x00, in TEST() local 51 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 69 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 93 std::vector<uint8> embeddings(bytes_per_embedding * num_buckets); in TEST() local 95 std::fill(embeddings.begin(), embeddings.end(), 0); in TEST() 98 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 116 std::vector<uint8> embeddings(bytes_per_embedding * num_buckets, 0xFF); in TEST() local 119 DequantizeAdd(scales.data(), embeddings.data(), bytes_per_embedding, in TEST() 137 std::vector<uint8> embeddings(bytes_per_embedding * num_buckets, 0); in TEST() local 139 embeddings[4] = (1 << 7) | (1 << 6) | (1 << 4) | 1; in TEST() [all …]
|
D | quantization.cc | 28 void DequantizeAdd8bit(const float* scales, const uint8* embeddings, in DequantizeAdd8bit() argument 36 embeddings[bucket_id * bytes_per_embedding + k]); in DequantizeAdd8bit() 40 void DequantizeAddNBit(const float* scales, const uint8* embeddings, in DequantizeAddNBit() argument 50 uint16 data = embeddings[bucket_id * bytes_per_embedding + read16_offset]; in DequantizeAddNBit() 54 data |= embeddings[bucket_id * bytes_per_embedding + read16_offset + 1] in DequantizeAddNBit() 73 bool DequantizeAdd(const float* scales, const uint8* embeddings, in DequantizeAdd() argument 78 DequantizeAdd8bit(scales, embeddings, bytes_per_embedding, in DequantizeAdd() 81 DequantizeAddNBit(scales, embeddings, bytes_per_embedding, in DequantizeAdd()
|
D | model-executor.cc | 66 const TfLiteTensor* embeddings = interpreter->tensor(0); in FromBuffer() local 67 if (embeddings->dims->size != 2) { in FromBuffer() 70 int num_buckets = embeddings->dims->data[0]; in FromBuffer() 76 int bytes_per_embedding = embeddings->dims->data[1]; in FromBuffer() 85 embedding_size, scales, embeddings, std::move(interpreter), in FromBuffer() 92 const TfLiteTensor* scales, const TfLiteTensor* embeddings, in TFLiteEmbeddingExecutor() argument 101 embeddings_(embeddings), in TFLiteEmbeddingExecutor()
|
D | quantization.h | 32 bool DequantizeAdd(const float* scales, const uint8* embeddings,
|
/external/tensorflow/tensorflow/python/ops/ |
D | embedding_ops.py | 485 embeddings = embedding_lookup( 487 if embeddings.dtype in (dtypes.float16, dtypes.bfloat16): 488 embeddings = math_ops.cast(embeddings, dtypes.float32) 491 if weights.dtype != embeddings.dtype: 492 weights = math_ops.cast(weights, embeddings.dtype) 494 embeddings = array_ops.gather(embeddings, idx) 498 array_ops.expand_dims(array_ops.rank(embeddings) - 1, 0), 1) 507 if embeddings.get_shape().ndims is not None: 510 [1 for _ in range(embeddings.get_shape().ndims - 1)])) 512 embeddings *= weights [all …]
|
/external/libtextclassifier/actions/ |
D | actions-suggestions_test.cc | 1094 std::vector<float> embeddings; in TEST_F() local 1097 EXPECT_TRUE(embedder.EmbedTokensPerMessage(tokens, &embeddings, in TEST_F() 1101 EXPECT_EQ(embeddings.size(), 3); in TEST_F() 1102 EXPECT_THAT(embeddings[0], in TEST_F() 1105 EXPECT_THAT(embeddings[1], in TEST_F() 1108 EXPECT_THAT(embeddings[2], in TEST_F() 1118 std::vector<float> embeddings; in TEST_F() local 1121 EXPECT_TRUE(embedder.EmbedTokensPerMessage(tokens, &embeddings, in TEST_F() 1125 EXPECT_EQ(embeddings.size(), 5); in TEST_F() 1126 EXPECT_THAT(embeddings[0], in TEST_F() [all …]
|
D | actions-suggestions.cc | 602 std::vector<float>* embeddings, int* max_num_tokens_per_message) const { in EmbedTokensPerMessage() argument 633 tokens[i][pos], embedding_executor_.get(), embeddings)) { in EmbedTokensPerMessage() 640 embeddings->insert(embeddings->end(), embedded_padding_token_.begin(), in EmbedTokensPerMessage() 650 std::vector<float>* embeddings, int* total_token_count) const { in EmbedAndFlattenTokens() argument 681 embeddings->insert(embeddings->end(), embedded_start_token_.begin(), in EmbedAndFlattenTokens() 689 tokens[i][pos], embedding_executor_.get(), embeddings)) { in EmbedAndFlattenTokens() 697 embeddings->insert(embeddings->end(), embedded_end_token_.begin(), in EmbedAndFlattenTokens() 708 embeddings->insert(embeddings->end(), embedded_padding_token_.begin(), in EmbedAndFlattenTokens()
|
D | actions-suggestions.h | 131 std::vector<float>* embeddings, 142 std::vector<float>* embeddings,
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | encoders.py | 72 embeddings = variables.model_variable( 82 [embeddings], sparse_ids, combiner='mean', default_id=0) 87 embedding_ops.embedding_lookup(embeddings, ids), axis=1) 135 embeddings = variables.model_variable( 140 return contrib_embedding_ops.embedding_lookup_unique(embeddings, ids) 141 return embedding_ops.embedding_lookup(embeddings, ids)
|
D | embedding_ops.py | 444 embeddings = scattered_embedding_lookup( 448 embeddings = math_ops.sparse_segment_sum(embeddings, idx, segment_ids, 451 embeddings = math_ops.sparse_segment_mean(embeddings, idx, segment_ids, 454 embeddings = math_ops.sparse_segment_sqrt_n(embeddings, idx, segment_ids, 459 return embeddings 564 embeddings = _sampled_scattered_embedding_lookup( 573 embeddings = math_ops.multiply(signs, embeddings, name="signs_hash") 579 return math_ops.unsorted_segment_sum(embeddings, segment_ids, 671 embeddings = _embedding_lookup_with_distributed_aggregation( 682 if weights.dtype != embeddings.dtype: [all …]
|
D | feature_column.py | 1223 embeddings = contrib_variables.model_variable( 1232 embeddings, 1252 embeddings = shared_embedding_collection[0] 1253 if embeddings.get_shape() != shape: 1261 embeddings = contrib_variables.model_variable( 1268 graph.add_to_collection(shared_embedding_collection_name, embeddings) 1270 embeddings = contrib_variables.model_variable( 1278 if _is_variable(embeddings): 1279 embeddings = [embeddings] 1281 embeddings = embeddings._get_variable_list() # pylint: disable=protected-access [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | ops_test.py | 65 embeddings = ops.categorical_variable( 68 emb1 = sess.run(embeddings, 70 emb2 = sess.run(embeddings,
|
D | embeddings_ops.py | 90 embeddings = vs.get_variable(name + '_embeddings', 92 return embedding_lookup(embeddings, tensor_in)
|
/external/tensorflow/tensorflow/examples/tutorials/word2vec/ |
D | word2vec_basic.py | 174 embeddings = tf.Variable( 176 embed = tf.nn.embedding_lookup(embeddings, train_inputs) 210 norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True)) 211 normalized_embeddings = embeddings / norm 295 embedding_conf = config.embeddings.add() 296 embedding_conf.tensor_name = embeddings.name
|
/external/tensorflow/tensorflow/contrib/losses/python/metric_learning/ |
D | metric_loss_ops_test.py | 140 embeddings=ops.convert_to_tensor(embedding), 193 embeddings=ops.convert_to_tensor(embedding), 532 embeddings, labels = self._genClusters(n_samples=128, n_clusters=64) 535 embeddings, labels, margin_multiplier, enable_pam_finetuning=False) 538 embeddings=ops.convert_to_tensor(embeddings), 549 embeddings, labels = self._genClusters(n_samples=128, n_clusters=64) 552 embeddings, labels, margin_multiplier, enable_pam_finetuning=True) 555 embeddings=ops.convert_to_tensor(embeddings),
|
D | metric_loss_ops.py | 160 def triplet_semihard_loss(labels, embeddings, margin=1.0): argument 186 pdist_matrix = pairwise_distance(embeddings, squared=True) 411 def lifted_struct_loss(labels, embeddings, margin=1.0): argument 436 pairwise_distances = pairwise_distance(embeddings) 954 embeddings, argument 989 pairwise_distances = pairwise_distance(embeddings) 991 all_ids = math_ops.range(array_ops.shape(embeddings)[0])
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
D | export_simple_text_embedding.py | 64 self.embeddings = tf.Variable( 66 self.variables = [self.embeddings] 90 embedding_weights=self.embeddings,
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | embeddings.py | 129 self.embeddings = self.add_weight( 136 self.embeddings = self.add_weight( 178 out = embedding_ops.embedding_lookup(self.embeddings, inputs)
|
/external/icu/icu4j/eclipse-build/plugins.template/com.ibm.icu.base/src/com/ibm/icu/text/ |
D | Bidi.java | 2254 byte[] embeddings, in Bidi() argument 2261 this(new java.text.Bidi(text, textStart, embeddings, embStart, paragraphLength, flags)); in Bidi()
|
/external/tensorflow/tensorflow/contrib/seq2seq/python/kernel_tests/ |
D | basic_decoder_test.py | 137 embeddings = np.random.randn(vocabulary_size, 140 helper = helper_py.GreedyEmbeddingHelper(embeddings, start_tokens, 189 expected_step_next_inputs = embeddings[expected_sample_ids] 213 embeddings = np.random.randn(vocabulary_size, 216 helper = helper_py.SampleEmbeddingHelper(embeddings, start_tokens, 265 expected_step_next_inputs = embeddings[sample_ids] 281 embeddings = np.random.randn( 288 embedding=embeddings, 352 embeddings[sample_ids[batch_where_sampling]])
|
D | basic_decoder_v2_test.py | 139 embeddings = np.random.randn(vocabulary_size, 141 embeddings_t = constant_op.constant(embeddings) 195 expected_step_next_inputs = embeddings[expected_sample_ids] 216 embeddings = np.random.randn(vocabulary_size, 218 embeddings_t = constant_op.constant(embeddings) 271 expected_step_next_inputs = embeddings[sample_ids] 288 embeddings = np.random.randn( 301 input_t, sequence_length=sequence_length, embedding=embeddings, 358 embeddings[sample_ids[batch_where_sampling]])
|
/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | sampling_ops.py | 87 def logsumexp_logit(embeddings): argument 89 math_ops.matmul(embeddings, reweighted_inputs, transpose_b=True),
|
/external/libtextclassifier/lang_id/common/flatbuffers/ |
D | embedding-network-params-from-flatbuffer.cc | 211 Matrix embeddings = GetEmbeddingMatrix(i); in ValidityChecking() local 212 if (!VerifyMatrix(embeddings, bytes)) { in ValidityChecking() 216 input_size += embedding_num_features(i) * embeddings.cols; in ValidityChecking()
|
/external/tensorflow/tensorflow/contrib/tensorboard/plugins/projector/ |
D | projector_api_test.py | 39 emb1 = config.embeddings.add()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | embedding_ops_test.py | 270 embeddings = constant_op.constant([[2.0]]) 274 [embeddings], ids, max_norm=1.0) 281 embeddings = constant_op.constant([[2.0, 4.0], [3.0, 1.0]]) 285 [embeddings], ids, max_norm=2.0) 288 math_ops.reduce_sum(embeddings * embeddings, axis=1)) 289 normalized = embeddings / array_ops.stack([norms, norms], axis=1)
|