/external/tensorflow/tensorflow/core/kernels/ |
D | dilation_ops_gpu.cu.cc | 42 int filter_cols, int output_rows, in DilationKernel() argument 60 for (int w = 0; w < filter_cols; ++w) { in DilationKernel() 66 filter_ptr[d + depth * (w + filter_cols * h)]; in DilationKernel() 82 int depth, int filter_rows, int filter_cols, int output_rows, in DilationBackpropInputKernel() argument 104 for (int w = 0; w < filter_cols; ++w) { in DilationBackpropInputKernel() 110 filter_ptr[d + depth * (w + filter_cols * h)]; in DilationBackpropInputKernel() 131 int depth, int filter_rows, int filter_cols, int output_rows, in DilationBackpropFilterKernel() argument 153 for (int w = 0; w < filter_cols; ++w) { in DilationBackpropFilterKernel() 159 filter_ptr[d + depth * (w + filter_cols * h)]; in DilationBackpropFilterKernel() 170 filter_backprop_ptr + d + depth * (w_max + filter_cols * h_max), in DilationBackpropFilterKernel() [all …]
|
D | depthwise_conv_grad_op.cc | 83 const int64 filter_cols = filter_shape.dim_size(1); \ 120 GetWindowedOutputSize(input_cols, filter_cols, stride, \ 138 args.filter_cols = filter_cols; \ 148 << "]; Filter: [" << filter_rows << ", " << filter_cols << ", " \ 189 const int64 filter_cols = args.filter_cols; in CopyOutputBackpropRegion() local 200 static_cast<int64>(0), (in_c - filter_cols + pad_cols + stride) / stride); in CopyOutputBackpropRegion() 204 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in CopyOutputBackpropRegion() 206 (out_c_end - out_c_start + 1) < args.filter_cols) { in CopyOutputBackpropRegion() 221 (f_r * filter_cols + f_c) * padded_filter_inner_dim_size; in CopyOutputBackpropRegion() 287 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in ComputeBackpropInput() [all …]
|
D | depthwise_conv_op.cc | 90 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in Run() 171 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()() 194 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()() 343 const int32 filter_cols = filter.dim_size(1); in Compute() local 353 GetWindowedOutputSize(input_cols, filter_cols, stride_, in Compute() 380 << filter_cols << ", " << in_depth << ", " << depth_multiplier in Compute() 397 TensorShape{filter_rows, filter_cols, filter_in_depth, out_depth}; in Compute() 418 args.filter_cols = filter_cols; in Compute()
|
D | deep_conv2d.h | 74 int filter_cols; member 89 filter_cols(0), in Conv2DArgs() 101 int filter_cols, int in_depth, int out_depth,
|
D | mkl_conv_ops.h | 216 int filter_cols = in GetFilterSizeInMklOrder() local 233 mkldnn_sizes[MKL_GROUP_FILTER_DIM_W] = filter_cols; in GetFilterSizeInMklOrder() 241 mkldnn_sizes[MklDnnDims::Dim_W] = filter_cols; in GetFilterSizeInMklOrder() 256 int filter_cols = in GetFilterSizeInMklOrder() local 270 mkldnn_sizes[MklDnnDims3D::Dim3d_W] = filter_cols; in GetFilterSizeInMklOrder() 343 int filter_planes, filter_rows, filter_cols; variable 346 filter_cols = filter_shape.dim_size(TF_2DFILTER_DIM_W); 350 filter_cols = filter_shape.dim_size(TF_3DFILTER_DIM_W); 411 input_cols, filter_cols, dilation_cols, stride_cols, 421 input_cols, filter_cols, stride_cols,
|
D | dilation_ops.cc | 93 const int filter_cols = filter.dim_size(1); in ParseSizes() local 104 filter_cols + (filter_cols - 1) * (*rate_cols - 1); in ParseSizes() 174 const int filter_cols = filter.dimension(1); in operator ()() local 191 for (int w = 0; w < filter_cols; ++w) { in operator ()() 283 const int filter_cols = filter.dimension(1); in operator ()() local 308 for (int w = 0; w < filter_cols; ++w) { in operator ()() 403 const int filter_cols = filter.dimension(1); in operator ()() local 428 for (int w = 0; w < filter_cols; ++w) { in operator ()()
|
D | conv_ops.cc | 157 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 173 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 179 !CanUseDeepConv2D(stride_rows, stride_cols, filter_rows, filter_cols, in Run() 190 args.filter_cols = filter_cols; in Run() 214 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 228 int filter_cols, int pad_rows, int pad_cols, int out_rows, in Run() argument 242 desc.S = filter_cols; in Run() 383 const int filter_cols = static_cast<int>(filter.dim_size(1)); in ComputeConv2DDimension() local 414 input_cols, filter_cols, dilation_cols, stride_cols, params.padding, in ComputeConv2DDimension() 422 dimensions->filter_cols = filter_cols; in ComputeConv2DDimension() [all …]
|
D | depthwise_conv_op_gpu.h | 50 args.pad_cols < args.filter_cols && in CanLaunchDepthwiseConv2dGPUSmall() 51 args.filter_rows * args.filter_cols <= in CanLaunchDepthwiseConv2dGPUSmall() 63 args.pad_cols < args.filter_cols && block_height <= args.in_rows && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 64 args.filter_rows * args.filter_cols <= args.in_cols * block_height; in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 84 kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; in DepthwiseConv2dGPUKernelNHWC() 191 kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; in DepthwiseConv2dGPUKernelNHWCSmall() 324 kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; in DepthwiseConv2dGPUKernelNCHW() 475 kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; in DepthwiseConv2dGPUKernelNCHWSmall() 631 const int tile_width = args.in_cols + args.filter_cols - 1; in LaunchDepthwiseConv2dGPUSmall() 634 const int filter_pixels = args.filter_rows * args.filter_cols; in LaunchDepthwiseConv2dGPUSmall() [all …]
|
D | depthwise_conv_op.h | 32 int filter_cols; member 49 filter_cols(0), in DepthwiseArgs() 145 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; 227 for (int64 f_c = 0; f_c < args.filter_cols; ++f_c) {
|
D | conv_ops_3d.cc | 221 const int64 filter_cols = filter.dim_size(2); in launch() local 235 0, (out_cols - 1) * strides[2] + filter_cols - in_cols); in launch() 239 if (filter_planes == 1 && filter_rows == 1 && filter_cols == 1 && in launch() 267 filter_cols == in_cols && padding == Padding::VALID && in launch() 366 filter_desc.set_spatial_dim(DimIndex::X, filter_cols) in launch() 386 filter_rows, filter_cols}), in launch() 423 {{filter_planes, filter_rows, filter_cols}}, in launch()
|
D | eigen_benchmark.h | 130 Eigen::Index filter_cols = filter_dims[1]; in SpatialConvolutionBackwardKernel() local 149 input, output_backward, filter_rows, filter_cols); in SpatialConvolutionBackwardKernel() 269 Eigen::Index filter_cols = filter_dims[1]; in CuboidConvolutionBackwardKernel() local 289 input, output_backward, filter_planes, filter_rows, filter_cols); in CuboidConvolutionBackwardKernel()
|
D | deep_conv2d.cc | 74 static int64 GetDirectConvCost(int filter_rows, int filter_cols, int in_depth, in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 98 int filter_cols, int in_depth, int out_depth, in CanUseDeepConv2D() argument 103 filter_cols != 3) { in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 301 std::max(int64{0}, args.filter_cols - base_filter_cols); in operator ()() 338 if (f_c >= args.filter_cols) continue; in operator ()() 342 (args.in_depth * (f_r * args.filter_cols + f_c)) + in operator ()() 483 const int64 shard_cost = args.filter_rows * args.filter_cols * in_depth * in operator ()() 961 std::max(int64{0}, args.filter_cols - base_filter_rows); in operator ()()
|
D | conv_ops_using_gemm.cc | 506 const int filter_cols = static_cast<int>(filter.dim_size(1)); in Compute() local 525 GetWindowedOutputSize(input_cols, filter_cols, stride_cols, in Compute() 537 << ", filter_cols = " << filter_cols in Compute() 550 in_depth, filter.flat<T>().data(), filter_rows, filter_cols, in Compute()
|
D | nn_ops_test.cc | 106 int out_depth, int filter_rows, int filter_cols, in BM_ConvFloat() argument 129 TF_CHECK_OK(GetWindowedOutputSize(cols, filter_cols, stride, padding, in BM_ConvFloat() 138 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloat() 145 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloat() 151 SetConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in BM_ConvFloat() 160 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in BM_ConvFloat() 501 int filter_cols, DEPTHWISE_CONV_OP op, in BM_ConvFloatDepthwise() argument 523 TF_CHECK_OK(GetWindowedOutputSize(cols, filter_cols, stride, padding, in BM_ConvFloatDepthwise() 533 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloatDepthwise() 544 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloatDepthwise() [all …]
|
D | quantized_conv_ops.cc | 530 const int64 filter_cols = filter.dim_size(1); in Compute() local 545 GetWindowedOutputSize(input_cols, filter_cols, stride, in Compute() 563 filter_rows, filter_cols, out_depth, offset_filter, stride, in Compute()
|
D | conv_ops_fused_image_transform.cc | 810 const int filter_cols = static_cast<int>(filter.dim_size(1)); in Compute() local 830 GetWindowedOutputSize(padded_cols, filter_cols, stride_cols, in Compute() 845 << ", filter_cols = " << filter_cols in Compute() 860 filter_cols, out_depth, stride_rows, stride_cols, padding_, in Compute()
|
D | conv_ops.h | 88 int filter_cols;
|
D | eigen_spatial_convolutions_test.cc | 1383 int filter_count, int filter_cols, int filter_rows, in PackRhsHelper() argument 1480 filter_rows, filter_cols, // in PackRhsHelper() 1491 reshape_dims[0] = input_depth * filter_rows * filter_cols; // patch size in PackRhsHelper() 1556 int filter_count, int filter_cols, int filter_rows, in PackLhsHelper() argument 1563 eigen_assert(block_cols <= input_depth * filter_rows * filter_cols); in PackLhsHelper() 1572 Dimensions filter_dims(filter_count, filter_rows, filter_cols, input_depth); in PackLhsHelper() 1628 reshape_dims[1] = input_depth * filter_rows * filter_cols; in PackLhsHelper() 1683 const Index max_col = filter_rows * filter_cols * input_depth; in PackLhsHelper() 1714 "filter: count=", filter_count, " dims=", filter_rows, "x", filter_cols, in PackLhsHelper()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_test.py | 1639 filter_cols, in_depth, out_depth, stride_rows, argument 1643 filter_shape = [filter_rows, filter_cols, in_depth, out_depth] 1647 output_cols = (input_cols - filter_cols + stride_cols) // stride_cols 1655 output_cols = (input_cols + padding[2][0] + padding[2][1] - filter_cols + 1724 filter_cols=3, 1742 filter_cols=2, 1760 filter_cols=3, 1778 filter_cols=2, 1796 filter_cols=3, 1814 filter_cols=4, [all …]
|
D | conv_ops_3d_test.py | 372 filter_planes, filter_rows, filter_cols = filter_shape 376 filter_planes, filter_rows, filter_cols, in_depth, out_depth 390 math.ceil((input_cols - filter_cols + 1.0) / strides[3]))
|
/external/tensorflow/tensorflow/python/framework/ |
D | common_shapes.py | 208 filter_cols = filter_shape[1] 226 filter_cols, stride_r, stride_c, 267 filter_cols = filter_shape[1] 287 filter_cols, stride, stride, 332 filter_cols = depthwise_filter_shape[1] 350 filter_cols, stride, stride,
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 83 const int32 filter_cols = filter.dim_size(1); in Compute() local 95 GetWindowedOutputSize(input_cols, filter_cols, stride, in Compute() 112 << filter_cols << ", " << in_depth << ", " << depth_multiplier in Compute()
|
/external/tensorflow/tensorflow/contrib/fused_conv/kernels/ |
D | fused_conv2d_bias_activation_op.cc | 204 const int32 filter_cols = GetFilterDim(filter, filter_format_, 'W'); in Compute() local 215 OP_REQUIRES_OK(context, GetWindowedOutputSize(conv_input_cols, filter_cols, in Compute() 226 << ", filter_cols = " << filter_cols in Compute() 480 const int filter_cols = GetFilterDim(filter_param, filter_format, 'W'); in launch() local 498 0, (output_cols - 1) * col_stride + filter_cols - conv_input_cols); in launch() 505 AdjustPaddingForCudnn(padding_cols, is_int8x4, filter_cols, &padding_cols, in launch() 589 .set_input_filter_width(filter_cols) in launch() 669 {{filter_rows, filter_cols}}, in launch()
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | utils_test.cc | 69 int filter_cols = 3; in TEST() local 83 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST() 98 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST()
|
/external/tensorflow/tensorflow/contrib/lite/kernels/internal/optimized/ |
D | optimized_ops.h | 1185 const int filter_cols = filter_shape.Dims(filter_dim_count - 1); in FullyConnected() local 1186 TFLITE_DCHECK_EQ(filter_shape.FlatSize(), filter_rows * filter_cols); in FullyConnected() 1192 filter_data, output_rows, filter_cols, filter_cols); in FullyConnected() 1194 input_data, filter_cols, batches, filter_cols); in FullyConnected() 2245 const int filter_cols = FlatSizeSkipDim(filter_shape, 0); in HybridConv() local 2252 const int gemm_input_cols = filter_cols; in HybridConv() 2275 filter_data, filter_rows, filter_cols, gemm_input_data, in HybridConv() 2425 const int filter_cols = in Conv() local 2434 TFLITE_DCHECK_EQ(filter_cols, gemm_input_rows); in Conv() 2437 filter_data, filter_rows, filter_cols); in Conv() [all …]
|