Home
last modified time | relevance | path

Searched refs:filter_rows (Results 1 – 25 of 32) sorted by relevance

12

/external/tensorflow/tensorflow/core/kernels/
Ddilation_ops_gpu.cu.cc41 int input_cols, int depth, int filter_rows, in DilationKernel() argument
57 for (int h = 0; h < filter_rows; ++h) { in DilationKernel()
82 int depth, int filter_rows, int filter_cols, int output_rows, in DilationBackpropInputKernel() argument
101 for (int h = 0; h < filter_rows; ++h) { in DilationBackpropInputKernel()
131 int depth, int filter_rows, int filter_cols, int output_rows, in DilationBackpropFilterKernel() argument
150 for (int h = 0; h < filter_rows; ++h) { in DilationBackpropFilterKernel()
190 const int filter_rows = filter.dimension(0); in operator ()() local
202 input_rows, input_cols, depth, filter_rows, filter_cols, output_rows, in operator ()()
221 const int filter_rows = filter.dimension(0); in operator ()() local
244 input_cols, depth, filter_rows, filter_cols, output_rows, output_cols, in operator ()()
[all …]
Ddepthwise_conv_grad_op.cc82 const int64 filter_rows = filter_shape.dim_size(0); \
117 GetWindowedOutputSize(input_rows, filter_rows, stride, \
137 args.filter_rows = filter_rows; \
148 << "]; Filter: [" << filter_rows << ", " << filter_cols << ", " \
188 const int64 filter_rows = args.filter_rows; in CopyOutputBackpropRegion() local
197 static_cast<int64>(0), (in_r - filter_rows + pad_rows + stride) / stride); in CopyOutputBackpropRegion()
204 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in CopyOutputBackpropRegion()
205 if ((out_r_end - out_r_start + 1) < args.filter_rows || in CopyOutputBackpropRegion()
287 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in ComputeBackpropInput()
389 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()()
[all …]
Ddepthwise_conv_op.cc90 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in Run()
171 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()()
194 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()()
335 const int32 filter_rows = filter.dim_size(0); in Compute() local
350 GetWindowedOutputSize(input_rows, filter_rows, stride_, in Compute()
379 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute()
397 TensorShape{filter_rows, filter_cols, filter_in_depth, out_depth}; in Compute()
417 args.filter_rows = filter_rows; in Compute()
Ddeep_conv2d.h73 int filter_rows; member
88 filter_rows(0), in Conv2DArgs()
100 bool CanUseDeepConv2D(int stride_rows, int stride_cols, int filter_rows,
Dmkl_conv_ops.h214 int filter_rows = in GetFilterSizeInMklOrder() local
232 mkldnn_sizes[MKL_GROUP_FILTER_DIM_H] = filter_rows; in GetFilterSizeInMklOrder()
240 mkldnn_sizes[MklDnnDims::Dim_H] = filter_rows; in GetFilterSizeInMklOrder()
254 int filter_rows = in GetFilterSizeInMklOrder() local
269 mkldnn_sizes[MklDnnDims3D::Dim3d_H] = filter_rows; in GetFilterSizeInMklOrder()
343 int filter_planes, filter_rows, filter_cols; variable
345 filter_rows = filter_shape.dim_size(TF_2DFILTER_DIM_H);
349 filter_rows = filter_shape.dim_size(TF_3DFILTER_DIM_H);
407 input_rows, filter_rows, dilation_rows, stride_rows,
418 input_rows, filter_rows, stride_rows,
Ddilation_ops.cc92 const int filter_rows = filter.dim_size(0); in ParseSizes() local
102 filter_rows + (filter_rows - 1) * (*rate_rows - 1); in ParseSizes()
173 const int filter_rows = filter.dimension(0); in operator ()() local
188 for (int h = 0; h < filter_rows; ++h) { in operator ()()
282 const int filter_rows = filter.dimension(0); in operator ()() local
305 for (int h = 0; h < filter_rows; ++h) { in operator ()()
402 const int filter_rows = filter.dimension(0); in operator ()() local
425 for (int h = 0; h < filter_rows; ++h) { in operator ()()
Dconv_ops.cc156 int input_cols, int in_depth, int filter_rows, in Run() argument
172 int input_cols, int in_depth, int filter_rows, in Run() argument
179 !CanUseDeepConv2D(stride_rows, stride_cols, filter_rows, filter_cols, in Run()
189 args.filter_rows = filter_rows; in Run()
213 int input_cols, int in_depth, int filter_rows, in Run() argument
227 int input_cols, int in_depth, int filter_rows, in Run() argument
241 desc.R = filter_rows; in Run()
375 const int filter_rows = static_cast<int>(filter.dim_size(0)); in ComputeConv2DDimension() local
411 input_rows, filter_rows, dilation_rows, stride_rows, params.padding, in ComputeConv2DDimension()
421 dimensions->filter_rows = filter_rows; in ComputeConv2DDimension()
[all …]
Ddepthwise_conv_op_gpu.h49 args.pad_rows < args.filter_rows && args.pad_cols >= 0 && in CanLaunchDepthwiseConv2dGPUSmall()
51 args.filter_rows * args.filter_cols <= in CanLaunchDepthwiseConv2dGPUSmall()
62 args.pad_rows < args.filter_rows && args.pad_cols >= 0 && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall()
64 args.filter_rows * args.filter_cols <= args.in_cols * block_height; in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall()
82 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNHWC()
189 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNHWCSmall()
322 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNCHW()
473 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNCHWSmall()
632 const int tile_height = block_height * 2 + args.filter_rows - 1; in LaunchDepthwiseConv2dGPUSmall()
634 const int filter_pixels = args.filter_rows * args.filter_cols; in LaunchDepthwiseConv2dGPUSmall()
[all …]
Ddepthwise_conv_op.h31 int filter_rows; member
48 filter_rows(0), in DepthwiseArgs()
145 const int64 filter_spatial_size = args.filter_rows * args.filter_cols;
224 for (int64 f_r = 0; f_r < args.filter_rows; ++f_r) {
Dconv_ops_3d.cc220 const int64 filter_rows = filter.dim_size(1); in launch() local
233 0, (out_rows - 1) * strides[1] + filter_rows - in_rows); in launch()
239 if (filter_planes == 1 && filter_rows == 1 && filter_cols == 1 && in launch()
266 } else if (filter_planes == in_planes && filter_rows == in_rows && in launch()
367 .set_spatial_dim(DimIndex::Y, filter_rows) in launch()
386 filter_rows, filter_cols}), in launch()
423 {{filter_planes, filter_rows, filter_cols}}, in launch()
Deigen_benchmark.h129 Eigen::Index filter_rows = filter_dims[0]; in SpatialConvolutionBackwardKernel() local
149 input, output_backward, filter_rows, filter_cols); in SpatialConvolutionBackwardKernel()
268 Eigen::Index filter_rows = filter_dims[0]; in CuboidConvolutionBackwardKernel() local
289 input, output_backward, filter_planes, filter_rows, filter_cols); in CuboidConvolutionBackwardKernel()
Dconv_ops_using_gemm.cc496 const int filter_rows = static_cast<int>(filter.dim_size(0)); in Compute() local
522 GetWindowedOutputSize(input_rows, filter_rows, stride_rows, in Compute()
539 << ", filter_rows = " << filter_rows in Compute()
550 in_depth, filter.flat<T>().data(), filter_rows, filter_cols, in Compute()
Ddeep_conv2d.cc74 static int64 GetDirectConvCost(int filter_rows, int filter_cols, int in_depth, in GetDirectConvCost() argument
76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost()
97 bool CanUseDeepConv2D(int stride_rows, int stride_cols, int filter_rows, in CanUseDeepConv2D() argument
102 if (stride_rows > 1 || stride_cols > 1 || filter_rows != 3 || in CanUseDeepConv2D()
119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D()
297 std::max(int64{0}, args.filter_rows - base_filter_rows); in operator ()()
334 if (f_r >= args.filter_rows) continue; in operator ()()
483 const int64 shard_cost = args.filter_rows * args.filter_cols * in_depth * in operator ()()
957 std::max(int64{0}, args.filter_rows - base_filter_rows); in operator ()()
Dnn_ops_test.cc106 int out_depth, int filter_rows, int filter_cols, in BM_ConvFloat() argument
127 TF_CHECK_OK(GetWindowedOutputSize(rows, filter_rows, stride, padding, in BM_ConvFloat()
138 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloat()
145 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloat()
151 SetConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in BM_ConvFloat()
160 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in BM_ConvFloat()
500 int out_depth, int filter_rows, in BM_ConvFloatDepthwise() argument
521 TF_CHECK_OK(GetWindowedOutputSize(rows, filter_rows, stride, padding, in BM_ConvFloatDepthwise()
533 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloatDepthwise()
544 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloatDepthwise()
[all …]
Dquantized_conv_ops.cc525 const int64 filter_rows = filter.dim_size(0); in Compute() local
542 GetWindowedOutputSize(input_rows, filter_rows, stride, in Compute()
563 filter_rows, filter_cols, out_depth, offset_filter, stride, in Compute()
Dconv_ops_fused_image_transform.cc799 const int filter_rows = static_cast<int>(filter.dim_size(0)); in Compute() local
827 GetWindowedOutputSize(padded_rows, filter_rows, stride_rows, in Compute()
848 << ", filter_rows = " << filter_rows in Compute()
859 padded_cols, in_depth, filter.flat<T>().data(), filter_rows, in Compute()
Dconv_ops.h87 int filter_rows;
Deigen_spatial_convolutions_test.cc1383 int filter_count, int filter_cols, int filter_rows, in PackRhsHelper() argument
1480 filter_rows, filter_cols, // in PackRhsHelper()
1491 reshape_dims[0] = input_depth * filter_rows * filter_cols; // patch size in PackRhsHelper()
1556 int filter_count, int filter_cols, int filter_rows, in PackLhsHelper() argument
1563 eigen_assert(block_cols <= input_depth * filter_rows * filter_cols); in PackLhsHelper()
1572 Dimensions filter_dims(filter_count, filter_rows, filter_cols, input_depth); in PackLhsHelper()
1628 reshape_dims[1] = input_depth * filter_rows * filter_cols; in PackLhsHelper()
1683 const Index max_col = filter_rows * filter_cols * input_depth; in PackLhsHelper()
1714 "filter: count=", filter_count, " dims=", filter_rows, "x", filter_cols, in PackLhsHelper()
Dconv_grad_filter_ops.cc142 auto filter_rows = filter.dimension(0); in operator ()() local
154 desc.R = filter_rows; in operator ()()
/external/tensorflow/tensorflow/python/kernel_tests/
Dconv_ops_test.py1638 def ConstructAndTestGradient(self, batch, input_rows, input_cols, filter_rows, argument
1643 filter_shape = [filter_rows, filter_cols, in_depth, out_depth]
1646 output_rows = (input_rows - filter_rows + stride_rows) // stride_rows
1653 output_rows = (input_rows + padding[1][0] + padding[1][1] - filter_rows +
1723 filter_rows=3,
1741 filter_rows=2,
1759 filter_rows=3,
1777 filter_rows=2,
1795 filter_rows=3,
1813 filter_rows=4,
[all …]
Dconv_ops_3d_test.py372 filter_planes, filter_rows, filter_cols = filter_shape
376 filter_planes, filter_rows, filter_cols, in_depth, out_depth
388 math.ceil((input_rows - filter_rows + 1.0) / strides[2]))
/external/tensorflow/tensorflow/python/framework/
Dcommon_shapes.py207 filter_rows = filter_shape[0]
225 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
266 filter_rows = filter_shape[0]
286 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
331 filter_rows = depthwise_filter_shape[0]
349 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
/external/tensorflow/tensorflow/core/kernels/neon/
Dneon_depthwise_conv_op.cc82 const int32 filter_rows = filter.dim_size(0); in Compute() local
92 GetWindowedOutputSize(input_rows, filter_rows, stride, in Compute()
111 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute()
/external/tensorflow/tensorflow/contrib/fused_conv/kernels/
Dfused_conv2d_bias_activation_op.cc203 const int32 filter_rows = GetFilterDim(filter, filter_format_, 'H'); in Compute() local
212 OP_REQUIRES_OK(context, GetWindowedOutputSize(conv_input_rows, filter_rows, in Compute()
227 << ", filter_rows = " << filter_rows in Compute()
479 const int filter_rows = GetFilterDim(filter_param, filter_format, 'H'); in launch() local
496 0, (output_rows - 1) * row_stride + filter_rows - conv_input_rows); in launch()
503 AdjustPaddingForCudnn(padding_rows, is_int8x4, filter_rows, &padding_rows, in launch()
588 filter_desc.set_input_filter_height(filter_rows) in launch()
669 {{filter_rows, filter_cols}}, in launch()
/external/tensorflow/tensorflow/core/grappler/costs/
Dutils_test.cc68 int filter_rows = 3; in TEST() local
83 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST()
98 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST()

12