/external/tensorflow/tensorflow/compiler/tests/ |
D | nary_ops_test.py | 58 [np.array([[1, 2, 3]], dtype=np.float32)], 59 expected=np.array([[1, 2, 3]], dtype=np.float32)) 62 [np.array([1, 2], dtype=np.float32), 63 np.array([10, 20], dtype=np.float32)], 64 expected=np.array([11, 22], dtype=np.float32)) 66 [np.array([-4], dtype=np.float32), 67 np.array([10], dtype=np.float32), 68 np.array([42], dtype=np.float32)], 69 expected=np.array([48], dtype=np.float32)) 94 [np.array([[1, 2, 3]], dtype=np.float32)], [all …]
|
D | tensor_list_ops_test.py | 39 element_dtype=dtypes.float32, 50 element_dtype=dtypes.float32, 56 l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 57 _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 63 val = array_ops.placeholder(dtype=dtypes.float32) 66 element_dtype=dtypes.float32, 75 l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 76 _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 84 element_dtype=dtypes.float32, 89 _, e11 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) [all …]
|
D | stack_ops_test.py | 36 v = array_ops.placeholder(dtypes.float32) 37 h = gen_data_flow_ops.stack_v2(size, dtypes.float32, stack_name="foo") 40 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 46 x = array_ops.placeholder(dtypes.float32) 47 h = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="foo") 50 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 55 v = array_ops.placeholder(dtypes.float32) 56 h1 = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="foo") 59 c1 = gen_data_flow_ops.stack_pop_v2(h1, dtypes.float32) 60 h2 = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="bar") [all …]
|
D | image_ops_test.py | 112 flt_x = image_ops.convert_image_dtype(x, dtypes.float32) 122 x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) / 255. 128 y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) / 255. 149 x = array_ops.placeholder(np.float32) 184 flt_x = image_ops.convert_image_dtype(x, dtypes.float32) 202 flt_x = image_ops.convert_image_dtype(x, dtypes.float32) 220 flt_x = image_ops.convert_image_dtype(x, dtypes.float32) 247 x = array_ops.placeholder(dtypes.float32) 311 flt_image = image_ops.convert_image_dtype(image, dtypes.float32) 399 x = array_ops.placeholder(dtypes.float32, shape=x_shape) [all …]
|
D | function_test.py | 39 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 40 bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32) 45 @function.Defun(dtypes.float32, dtypes.float32) 65 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 66 bval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 71 @function.Defun(dtypes.float32, dtypes.float32) 89 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 90 bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32) 95 @function.Defun(dtypes.float32, dtypes.float32) 110 @function.Defun(dtypes.float32, dtypes.int32, dtypes.int32) [all …]
|
D | fused_batchnorm_test.py | 78 x_val = np.random.random_sample(x_shape).astype(np.float32) 79 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 80 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 94 np.float32, shape=x_val_converted.shape, name="x") 95 scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") 97 np.float32, shape=scale_shape, name="offset") 119 x_val = np.random.random_sample(x_shape).astype(np.float32) 120 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 121 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 122 mean_val = np.random.random_sample(scale_shape).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 9 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 10 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 13 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 14 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 17 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 18 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 21 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[5,5],is_arg_max=True,output_type=tf.int… 22 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[5,5],is_arg_max=True,output_type=tf.int… 25 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[10],is_arg_max=True,output_type=tf.int32 26 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[10],is_arg_max=True,output_type=tf.int64 [all …]
|
D | test_manifest.txt | 1 add/add_activation=True,dtype=tf.float32,input_shape_1=[1,3,4,3],input_shape_2=[1,3,4,3] 3 add/add_activation=False,dtype=tf.float32,input_shape_1=[5],input_shape_2=[5] 4 add/add_activation=True,dtype=tf.float32,input_shape_1=[5],input_shape_2=[5] 5 add/add_activation=True,dtype=tf.float32,input_shape_1=[1,3,4,3],input_shape_2=[3] 6 add/add_activation=False,dtype=tf.float32,input_shape_1=[1,3,4,3],input_shape_2=[3] 11 add/add_activation=True,dtype=tf.float32,input_shape_1=[3],input_shape_2=[1,3,4,3] 12 add/add_activation=False,dtype=tf.float32,input_shape_1=[3],input_shape_2=[1,3,4,3] 15 DISABLED_add/add_activation=False,dtype=tf.float32,input_shape_1=[],input_shape_2=[] 16 DISABLED_add/add_activation=False,dtype=tf.float32,input_shape_1=[0],input_shape_2=[1] 65 concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=1,type=tf.float32 [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | dense_attention_test.py | 34 scores = np.array([[[1.1]]], dtype=np.float32) 36 v = np.array([[[1.6]]], dtype=np.float32) 44 expected = np.array([[[1.6]]], dtype=np.float32) 49 scores = np.array([[[1.1]]], dtype=np.float32) 51 v = np.array([[[1.6]]], dtype=np.float32) 57 expected = np.array([[[1.6]]], dtype=np.float32) 62 scores = np.array([[[1., 0., 1.]]], dtype=np.float32) 64 v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) 79 expected = np.array([[[1.35795272077]]], dtype=np.float32) 84 scores = np.array([[[1., 0., 1.]]], dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | list_ops_test.py | 50 element_dtype=dtypes.float32, 54 l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 73 element_dtype=dtypes.float32, element_shape=[], max_num_elements=1) 85 element_dtype=dtypes.float32, 90 l = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 95 element_dtype=dtypes.float32, element_shape=[2, 3], num_elements=3) 96 _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 101 element_dtype=dtypes.float32, element_shape=[None, 3], num_elements=3) 103 l, element_dtype=dtypes.float32, element_shape=[4, 3]) 108 element_dtype=dtypes.float32, element_shape=None, num_elements=3) [all …]
|
D | sparse_conditional_accumulator_test.py | 63 dtypes_lib.float32, name="Q") 79 dtypes_lib.float32, name="Q", reduction_type="Invalid") 84 dtypes_lib.float32, 106 dtypes_lib.float32, name="Q") 113 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([1])) 121 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([3, 3])) 125 values=np.array([[0, 0, 1], [3, 0, 4]]).astype(np.float32))) 132 dtypes = [dtypes_lib.float16, dtypes_lib.float32, dtypes_lib.float64] 156 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([2, 2])) 158 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([2, 2])) [all …]
|
D | sparse_matmul_op_test.py | 38 64) / 128.0).reshape([rows, cols]).astype(np.float32) 50 x_dtype=dtypes.float32, 51 y_dtype=dtypes.float32): 63 np_x = math_ops.cast(tf_x, dtypes.float32).eval() 64 np_y = math_ops.cast(tf_y, dtypes.float32).eval() 77 x = np.arange(0., 4.).reshape([4, 1]).astype(np.float32) 78 y = np.arange(-1., 1.).reshape([1, 2]).astype(np.float32) 79 for x_dtype in (dtypes.float32, dtypes.bfloat16): 80 for y_dtype in (dtypes.float32, dtypes.bfloat16): 85 x = np.ones((4, 0)).astype(np.float32) [all …]
|
D | stack_ops_test.py | 39 -1, elem_type=dtypes.float32, stack_name="foo") 42 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 53 x = constant_op.constant(a, dtype=dtypes.float32) 55 -1, elem_type=dtypes.float32, stack_name="foo") 58 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 70 -1, elem_type=dtypes.float32, stack_name="foo") 77 a = constant_op.constant(np.ones(2000), dtype=dtypes.float32) 84 v = constant_op.constant(np.zeros(2000), dtype=dtypes.float32) 92 ny = y + gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 107 -1, elem_type=dtypes.float32, stack_name="foo") [all …]
|
D | variable_ops_test.py | 36 np.float32: dtypes.float32, 53 for dtype in [np.float32, np.float64, np.int32, np.int64]: 69 p = state_ops.variable_op([1, 2], dtypes.float32) 71 p = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) 77 var = state_ops.variable_op(value.shape, dtypes.float32) 85 var = state_ops.variable_op(value.shape, dtypes.float32) 93 var = state_ops.variable_op(value.shape, dtypes.float32, set_shape=False) 101 var = state_ops.variable_op(value.shape, dtypes.float32, set_shape=False) 107 tensor = array_ops.placeholder(dtypes.float32) 115 var = state_ops.variable_op(shape, dtypes.float32) [all …]
|
D | parse_single_example_op_test.py | 133 c_default = np.random.rand(2).astype(np.float32) 160 (2,), dtypes.float32, default_value=c_default), 179 (2,), dtype=dtypes.float32), 212 "a": parsing_ops.FixedLenFeature((1, 3), dtypes.float32) 229 "a": parsing_ops.FixedLenFeature(None, dtypes.float32) 254 np.array([3.0, 4.0], dtype=np.float32), 259 "st_c": empty_sparse(np.float32), 262 "st_c": empty_sparse(np.float32), 266 np.array([1.0, 2.0, -1.0], dtype=np.float32), 276 "st_c": parsing_ops.VarLenFeature(dtypes.float32), [all …]
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
D | conditioning_utils_test.py | 34 array_ops.placeholder(dtypes.float32, tensor_shape), 35 array_ops.placeholder(dtypes.float32, conditioning_shape)) 40 array_ops.placeholder(dtypes.float32, (4, 1)), 41 array_ops.placeholder(dtypes.float32, (5, 1))) 45 array_ops.placeholder(dtypes.float32, (5, None)), 46 array_ops.placeholder(dtypes.float32, (5, 1))) 50 array_ops.placeholder(dtypes.float32, (5, 2)), 51 array_ops.placeholder(dtypes.float32, (5))) 55 array_ops.placeholder(dtypes.float32, (5, 4, 1)), 56 array_ops.placeholder(dtypes.float32, (5, 10))) [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | vector_diffeomixture_test.py | 46 np.float32([2.]*dims), 51 multiplier=np.float32(1.1), 54 diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), 75 np.float32([2.]*dims), 80 multiplier=np.float32(1.1), 83 diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), 104 np.float32([2.]*dims), 109 multiplier=[np.float32(1.1)], 113 np.linspace(2.5, 3.5, dims, dtype=np.float32), 114 np.linspace(2.75, 3.25, dims, dtype=np.float32), [all …]
|
D | vector_student_t_test.py | 80 df = np.asarray(3., dtype=np.float32) 82 loc = np.asarray([1], dtype=np.float32) 83 scale_diag = np.asarray([2.], dtype=np.float32) 91 x = 2. * self._rng.rand(4, 1).astype(np.float32) - 1. 102 df = np.asarray([1., 2, 3], dtype=np.float32) 107 dtype=np.float32) 111 dtype=np.float32) 114 x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. 131 df = np.asarray([1., 2, 3], dtype=np.float32) 136 dtype=np.float32) [all …]
|
D | independent_test.py | 53 loc = np.float32([-1., 1]) 54 scale = np.float32([0.1, 0.5]) 74 loc = np.float32([[-1., 1], [1, -1]]) 75 scale = np.float32([1., 0.5]) 98 loc = np.float32([[-1., 1], [1, -1]]) 99 scale = np.float32([1., 0.5]) 133 loc=np.float32([-1., 1]), 134 scale=np.float32([0.1, 0.5])), 138 loc=np.float32(-1), 139 scale=np.float32(0.5)), [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 47 feature1_gains = np.array([7.62], dtype=np.float32) 49 feature1_left_node_contribs = np.array([[-4.375]], dtype=np.float32) 50 feature1_right_node_contribs = np.array([[7.143]], dtype=np.float32) 53 feature2_gains = np.array([0.63], dtype=np.float32) 55 feature2_left_node_contribs = np.array([[-0.6]], dtype=np.float32) 56 feature2_right_node_contribs = np.array([[0.24]], dtype=np.float32) 60 feature3_gains = np.array([7.65], dtype=np.float32) 62 feature3_left_node_contribs = np.array([[-4.89]], dtype=np.float32) 63 feature3_right_node_contribs = np.array([[5.3]], dtype=np.float32) 152 gradients = np.array([[5.]], dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_fused_batchnorm_test.py | 167 x32_init_val = x_init_val.astype(np.float32) 219 x32 = constant_op.constant(x_val, name='x32', dtype=dtypes.float32) 305 x32 = constant_op.constant(x_val, dtype=dtypes.float32, name='x32') 307 grad_y_val, dtype=dtypes.float32, name='grad_y32') 344 for dtype in [np.float16, np.float32]: 347 x_shape, dtype, [1], np.float32, use_gpu=True, data_format='NHWC') 349 x_shape, dtype, [1], np.float32, use_gpu=True, data_format='NCHW') 351 x_shape, dtype, [1], np.float32, use_gpu=False, data_format='NHWC') 356 for dtype in [np.float16, np.float32]: 358 x_shape, dtype, [2], np.float32, use_gpu=True, data_format='NHWC') [all …]
|
/external/tensorflow/tensorflow/python/eager/ |
D | function_argument_naming_test.py | 49 tensor_spec.TensorSpec(shape=(None,), dtype=dtypes.float32), 50 tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32)) 73 tensor_spec.TensorSpec(shape=(None,), dtype=dtypes.float32), 92 x=tensor_spec.TensorSpec(shape=(None,), dtype=dtypes.float32), 93 y=tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32)) 105 z=(tensor_spec.TensorSpec(shape=(None,), dtype=dtypes.float32), 106 tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32)), 107 y=tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32, 111 z=(tensor_spec.TensorSpec(shape=(None,), dtype=dtypes.float32, 113 tensor_spec.TensorSpec(shape=(), dtype=dtypes.float32, [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_infeed_test.py | 39 tuple_types=[dtypes.float32, dtypes.int32, dtypes.int32]) 42 [dtypes.float32, dtypes.int32, dtypes.int32]) 60 number_of_tuple_elements=2, tuple_types=[dtypes.float32]) 71 i.set_tuple_types([dtypes.float32, dtypes.int32]) 72 self.assertEqual(i.tuple_types, [dtypes.float32, dtypes.int32]) 73 i.set_tuple_types([dtypes.float32, dtypes.float32]) 74 self.assertEqual(i.tuple_types, [dtypes.float32, dtypes.float32]) 76 i.set_tuple_types([dtypes.float32]) 88 t2 = constant_op.constant(2.0, dtypes.float32, shape=[3, 18]) 91 self.assertEqual(i.tuple_types, [dtypes.int32, dtypes.float32]) [all …]
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/experimental/ |
D | autocast_variable_test.py | 76 x = get_var(1., dtypes.float32) 81 self.assertEqual(x.dtype, dtypes.float32) 82 self.assertEqual(x.value().dtype, dtypes.float32) 83 self.assertEqual(x.read_value().dtype, dtypes.float32) 84 self.assertEqual(array_ops.identity(x).dtype, dtypes.float32) 96 dtypes.float32): 97 self.assertEqual(x.dtype, dtypes.float32) 98 self.assertEqual(x.value().dtype, dtypes.float32) 99 self.assertEqual(x.read_value().dtype, dtypes.float32) 100 self.assertEqual(array_ops.identity(x).dtype, dtypes.float32) [all …]
|
/external/tensorflow/tensorflow/python/tools/ |
D | optimize_for_inference_test.py | 81 unused_constant_name, value=0, dtype=dtypes.float32, shape=[]) 86 self.set_attr_dtype(unconnected_add_node, "T", dtypes.float32) 89 a_constant_name, value=1, dtype=dtypes.float32, shape=[]) 98 b_constant_name, value=1, dtype=dtypes.float32, shape=[]) 108 self.set_attr_dtype(add_node, "T", dtypes.float32) 112 self.set_attr_dtype(unused_output_add_node, "T", dtypes.float32) 117 a_constant_name, value=1, dtype=dtypes.float32, shape=[]) 120 b_constant_name, value=1, dtype=dtypes.float32, shape=[]) 124 self.set_attr_dtype(add_node, "T", dtypes.float32) 128 graph_def, [], [add_name], dtypes.float32.as_datatype_enum) [all …]
|