/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | drop_stale_gradient_optimizer_test.py | 49 graphs = [] 106 graphs.append(graph) 109 return sessions, graphs, train_ops 119 sessions, graphs, train_ops = _get_workers(num_workers, 0) 120 with graphs[0].as_default(): 122 global_step = training_util.get_global_step(graphs[0]) 123 var_0 = graphs[0].get_tensor_by_name('v0:0') 124 var_1 = graphs[0].get_tensor_by_name('v1:0') 125 stale_counter = graphs[0].get_tensor_by_name('stale_counter:0') 142 sessions, graphs, train_ops = _get_workers(num_workers, -1) [all …]
|
D | agn_optimizer_test.py | 66 graphs = [] 127 graphs.append(graph) 130 return sessions, graphs, train_ops 144 sessions, graphs, train_ops = _get_workers(num_workers, 147 var_0 = graphs[0].get_tensor_by_name("v0:0") 148 var_1 = graphs[0].get_tensor_by_name("v1:0") 149 global_step = training_util.get_global_step(graphs[0]) 150 var_0_g = graphs[0].get_tensor_by_name( 152 var_1_g = graphs[0].get_tensor_by_name( 156 with graphs[0].as_default(): [all …]
|
D | elastic_average_optimizer_test.py | 69 graphs = [] 138 graphs.append(graph) 142 return sessions, graphs, train_ops, savers 157 sessions, graphs, train_ops, savers = _get_workers( 160 var_0 = graphs[0].get_tensor_by_name("v0:0") 161 var_1 = graphs[0].get_tensor_by_name("v1:0") 162 global_step = training_util.get_global_step(graphs[0]) 163 var_0_g = graphs[0].get_tensor_by_name(GLOBAL_VARIABLE_NAME + "/v0:0") 164 var_1_g = graphs[0].get_tensor_by_name(GLOBAL_VARIABLE_NAME + "/v1:0") 220 sessions, graphs, train_ops, savers = _get_workers( [all …]
|
D | model_average_optimizer_test.py | 63 graphs = [] 107 graphs.append(graph) 109 return sessions, graphs, train_ops 124 sessions, graphs, train_ops = _get_workers(num_workers, steps, workers) 126 var_0 = graphs[0].get_tensor_by_name("v0:0") 127 var_1 = graphs[0].get_tensor_by_name("v1:0") 128 global_step = training_util.get_global_step(graphs[0]) 129 global_var_0 = graphs[0].get_tensor_by_name( 131 global_var_1 = graphs[0].get_tensor_by_name(
|
/external/tensorflow/tensorflow/python/tools/ |
D | print_selective_registration_header_test.py | 88 def WriteGraphFiles(self, graphs): argument 90 for i, graph in enumerate(graphs): 99 graphs = [ 105 'rawproto', self.WriteGraphFiles(graphs), default_ops) 124 graphs[0].node[0].ClearField('device') 125 graphs[0].node[2].ClearField('device') 127 'rawproto', self.WriteGraphFiles(graphs), default_ops) 144 graphs = [ 149 'rawproto', self.WriteGraphFiles(graphs), default_ops) 168 self.WriteGraphFiles(graphs), 'rawproto', default_ops).split('\n')) [all …]
|
D | print_selective_registration_header.py | 48 graphs = FLAGS.graphs.split(',') 50 graphs, FLAGS.proto_fileformat, FLAGS.default_ops))
|
D | selective_registration_header_lib.py | 170 def get_header(graphs, argument 185 ops_and_kernels = get_ops_and_kernels(proto_fileformat, graphs, default_ops)
|
/external/tensorflow/tensorflow/python/training/ |
D | sync_replicas_optimizer_test.py | 37 graphs = [] 81 graphs.append(graph) 84 return sessions, graphs, train_ops 100 sessions, graphs, train_ops = get_workers(num_workers, 104 var_0_g_0 = graphs[0].get_tensor_by_name("v0:0") 105 var_1_g_0 = graphs[0].get_tensor_by_name("v1:0") 106 local_step_0 = graphs[0].get_tensor_by_name("sync_rep_local_step:0") 112 var_0_g_1 = graphs[1].get_tensor_by_name("v0:0") 113 var_1_g_1 = graphs[1].get_tensor_by_name("v1:0") 114 var_sparse_g_1 = graphs[1].get_tensor_by_name("v_sparse:0") [all …]
|
/external/syzkaller/tools/syz-benchcmp/ |
D | benchcmp.go | 46 graphs := []*Graph{ 55 for _, g := range graphs { 67 for _, g := range graphs { 75 printFinalStats(graphs) 76 display(graphs) 163 func printFinalStats(graphs []*Graph) { 164 for i := 1; i < len(graphs[0].Headers); i++ { 165 fmt.Printf("%-12v%16v%16v%16v\n", "", graphs[0].Headers[0], graphs[0].Headers[i], "diff") 166 for _, g := range graphs { 183 func display(graphs []*Graph) { [all …]
|
/external/tensorflow/tensorflow/python/autograph/pyct/static_analysis/ |
D | liveness.py | 104 def __init__(self, source_info, graphs): argument 106 self.graphs = graphs 112 subgraph = self.graphs[node] 227 def resolve(node, source_info, graphs): argument 237 cross_function_analyzer = WholeTreeAnalyzer(source_info, graphs)
|
D | reaching_definitions.py | 181 def __init__(self, source_info, graphs, definition_factory): argument 184 self.graphs = graphs 190 subgraph = self.graphs[node] 295 def resolve(node, source_info, graphs, definition_factory): argument 306 visitor = TreeAnnotator(source_info, graphs, definition_factory)
|
D | live_values_test.py | 52 graphs = cfg.build(node) 55 node = reaching_definitions.resolve(node, ctx, graphs,
|
/external/v8/tools/ |
D | run_perf.py | 167 def __init__(self, graphs, units, results_regexp, stddev_regexp): argument 168 self.name = '/'.join(graphs) 169 self.graphs = graphs 201 "graphs": self.graphs, 366 self.graphs = [] 397 self.graphs = parent.graphs[:] + [suite["name"]] 448 self.graphs, 507 self.graphs, 514 self.graphs, 549 AccumulateGenericResults(self.graphs, self.units, stdout), [all …]
|
/external/tensorflow/tensorflow/lite/toco/ |
D | README.md | 3 The TensorFlow Lite Converter converts TensorFlow graphs into 4 TensorFlow Lite graphs. There are additional usages that are also detailed in 22 frozen graphs (models generated via
|
/external/conscrypt/ |
D | settings.gradle | 8 include ":conscrypt-benchmark-graphs" 23 project(':conscrypt-benchmark-graphs').projectDir = "$rootDir/benchmark-graphs" as File
|
/external/tensorflow/tensorflow/contrib/makefile/ |
D | README.md | 68 mkdir -p ~/graphs 69 curl -o ~/graphs/inception.zip \ 71 && unzip ~/graphs/inception.zip -d ~/graphs/inception 78 --graph=$HOME/graphs/inception/tensorflow_inception_graph.pb 96 mkdir -p ~/graphs 97 curl -o ~/graphs/inception.zip \ 99 && unzip ~/graphs/inception.zip -d ~/graphs/inception 120 adb push ~/graphs/inception/tensorflow_inception_graph.pb /data/local/tmp/ 261 mkdir -p ~/graphs 262 curl -o ~/graphs/inception.zip \ [all …]
|
/external/v8/tools/perf/ |
D | statistics-for-json.R | 40 testName <- patch$traces[[i]]$graphs[[2]] 65 xlab(patch$traces[[i]]$graphs[[2]]) 73 xlab(patch$traces[[i]]$graphs[[2]])
|
/external/tensorflow/ |
D | SECURITY.md | 14 [**graphs**](https://developers.google.com/machine-learning/glossary/#graph). 41 Python code that generates TensorFlow graphs. 51 It is easily possible to create computation graphs in which malicious 58 In other words, graphs can contain vulnerabilities of their own. To allow users 92 from anywhere, and executes the graphs it is sent without performing any checks. 108 graphs known to the `ModelServer`. This means that an attacker may run 109 graphs using untrusted inputs as described above, but they would not be able to 110 execute arbitrary graphs. It is possible to safely expose a `ModelServer` 111 directly to an untrusted network, **but only if the graphs it is configured to 131 Given TensorFlow's flexibility, it is possible to specify computation graphs
|
/external/tensorflow/tensorflow/examples/ios/ |
D | README.md | 19 mkdir -p ~/graphs 20 curl -o ~/graphs/inception5h.zip \ 22 && unzip ~/graphs/inception5h.zip -d ~/graphs/inception5h 23 cp ~/graphs/inception5h/* tensorflow/examples/ios/benchmark/data/ 24 cp ~/graphs/inception5h/* tensorflow/examples/ios/camera/data/ 25 cp ~/graphs/inception5h/* tensorflow/examples/ios/simple/data/
|
/external/tensorflow/tensorflow/python/autograph/core/ |
D | converter.py | 359 graphs = cfg.build(node) 362 node = reaching_definitions.resolve(node, context, graphs, AnnotatedDef) 363 node = liveness.resolve(node, context, graphs)
|
/external/tensorflow/tensorflow/core/protobuf/ |
D | worker_service.proto | 28 // graphs on a set of local devices, on behalf of a MasterService. 30 // A worker service keeps track of multiple "registered graphs". Each
|
/external/tensorflow/tensorflow/python/autograph/pyct/ |
D | cfg_test.py | 56 graphs, node = self._build_cfg(test_fn) 57 graph, = graphs.values() 78 graphs, node = self._build_cfg(test_fn) 79 graph, = graphs.values()
|
/external/tensorflow/tensorflow/python/saved_model/ |
D | README.md | 17 * Multiple graphs sharing a single set of variables and assets can be added to a 24 to allow generic support for signatures that may need to be saved with the graphs. 46 as the canonical way to export TensorFlow graphs for serving. 87 Subsequent meta graphs will simply be saved with their graph definitions. If 192 SavedModel offers the flexibility to build and load TensorFlow graphs for a
|
/external/tensorflow/tensorflow/python/debug/ |
D | README.md | 6 graphs. It provides access to internal graph structures and tensor values at 37 * Association of nodes and tensors in graphs with Python source lines
|
/external/mockito/src/main/java/org/mockito/internal/creation/bytebuddy/ |
D | MockMethodAdvice.java | 44 private final WeakConcurrentMap<Class<?>, SoftReference<MethodGraph>> graphs field in MockMethodAdvice 130 SoftReference<MethodGraph> reference = graphs.get(instance.getClass()); in isOverridden() 134 graphs.put(instance.getClass(), new SoftReference<MethodGraph>(methodGraph)); in isOverridden()
|