Home
last modified time | relevance | path

Searched refs:in_cols (Results 1 – 25 of 25) sorted by relevance

/external/tensorflow/tensorflow/python/framework/
Dcommon_shapes.py205 in_cols = input_shape[2]
225 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
264 in_cols = input_shape[2]
286 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
329 in_cols = input_shape[2]
349 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
397 in_cols = input_shape[2]
412 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, ksize_r,
465 in_cols = input_shape[2]
484 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, ksize_r,
[all …]
/external/tensorflow/tensorflow/core/kernels/
Dpooling_ops_3d_sycl.h34 const int in_rows, const int in_cols, const int out_planes, in SYCL3DPoolParams()
43 in_cols_(in_cols), in SYCL3DPoolParams()
58 const int in_rows, const int in_cols, in SYCL3DPoolParams()
63 : SYCL3DPoolParams(depth, batch, in_planes, in_rows, in_cols, in SYCL3DPoolParams()
125 const int in_rows, const int in_cols, const int out_planes, in MaxPool3DSYCL() argument
132 : p_(depth, batch, in_planes, in_rows, in_cols, out_planes, out_rows, in MaxPool3DSYCL()
192 const int in_cols = GetTensorDim(tensor_in, data_format, '2');
207 MaxPool3DSYCL<T> max_pool(depth, batch, in_planes, in_rows, in_cols,
236 const int in_rows, const int in_cols,
245 : p_(depth, batch, in_planes, in_rows, in_cols, output_shape, window,
[all …]
Deigen_spatial_convolutions_test.cc671 const int in_cols = 7; in TEST() local
680 const int out_width = in_cols; in TEST()
682 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST()
712 r - off_r + j < in_rows && c - off_c + k < in_cols) { in TEST()
732 const int in_cols = 7; in TEST() local
741 const int out_width = in_cols; in TEST()
743 Tensor<float, 4, RowMajor> input(in_cols, in_rows, in_depth, in_channels); in TEST()
774 r - off_r + j < in_rows && c - off_c + k < in_cols) { in TEST()
794 const int in_cols = 5; in TEST() local
805 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST()
[all …]
Ddepthwise_conv_op_gpu.h47 args.in_cols <= 32 && args.in_rows == args.out_rows && in CanLaunchDepthwiseConv2dGPUSmall()
48 args.in_cols == args.out_cols && args.pad_rows >= 0 && in CanLaunchDepthwiseConv2dGPUSmall()
52 (args.in_rows + 1) / 2 * args.in_cols; in CanLaunchDepthwiseConv2dGPUSmall()
60 args.in_cols <= 32 && args.in_rows == args.out_rows && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall()
61 args.in_cols == args.out_cols && args.pad_rows >= 0 && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall()
64 args.filter_rows * args.filter_cols <= args.in_cols * block_height; in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall()
79 const int in_width = args.in_cols; in DepthwiseConv2dGPUKernelNHWC()
186 const int in_width = args.in_cols; in DepthwiseConv2dGPUKernelNHWCSmall()
196 assert(blockDim.y == args.in_cols); in DepthwiseConv2dGPUKernelNHWCSmall()
319 const int in_width = args.in_cols; in DepthwiseConv2dGPUKernelNCHW()
[all …]
Dconv_ops_3d.cc216 int64 in_cols = GetTensorDim(input, data_format, '2'); in launch() local
235 0, (out_cols - 1) * strides[2] + filter_cols - in_cols); in launch()
244 const uint64 m = in_batch * in_planes * in_rows * in_cols; in launch()
267 filter_cols == in_cols && padding == Padding::VALID && in launch()
272 const uint64 k = in_planes * in_rows * in_cols * in_depth; in launch()
306 const int64 new_in_cols = in_cols + cols_odd; in launch()
323 in_cols = new_in_cols; in launch()
330 FORMAT_NCHW, in_batch, {{in_planes, in_rows, in_cols}}, in_depth); in launch()
354 .set_spatial_dim(DimIndex::X, in_cols) in launch()
420 {{in_planes, in_rows, in_cols}}, in launch()
Davgpooling_op.cc265 const int64 in_cols = output_shape.dim_size(2); in Compute() local
291 GetWindowedOutputSize(in_cols, window_cols, col_stride, in Compute()
299 in_rows, in_cols, window_rows, window_cols, row_stride, in Compute()
320 GetBroadcastSize(c, in_cols, window_cols, col_stride, in Compute()
328 int64 input_index = (b * in_rows + r_dst) * in_cols + c_dst; in Compute()
348 window_rows * window_cols * depth_window * in_rows * in_rows * in_cols; in Compute()
506 const int64 in_cols = output_shape.dim_size(2); in Compute() local
531 GetWindowedOutputSize(in_cols, window_cols, col_stride, in Compute()
537 in_cols, // width in Compute()
Ddepthwise_conv_op.h29 int in_cols; member
46 in_cols(0), in DepthwiseArgs()
231 in_c < args.in_cols) {
232 auto* in = input + (in_r * args.in_cols + in_c) * args.in_depth;
Ddeep_conv2d.h71 int in_cols; member
86 in_cols(0), in Conv2DArgs()
Dconv_ops.cc187 args.in_cols = input_cols; in Run()
600 int64 in_cols = GetTensorDim(input, data_format, 'W'); in operator ()() local
615 const uint64 m = in_batch * in_rows * in_cols; in operator ()()
637 } else if (patch_rows == in_rows && patch_cols == in_cols && in operator ()()
687 status = GetWindowedOutputSizeVerboseV2(in_cols, patch_cols, col_dilation, in operator ()()
709 const int64 new_in_cols = in_cols + padding_cols_diff; in operator ()()
738 in_cols = new_in_cols; in operator ()()
744 ShapeFromFormat(FORMAT_NCHW, in_batch, in_rows, in_cols, in_depths); in operator ()()
767 .set_width(in_cols) in operator ()()
832 in_cols}}, // in_cols in operator ()()
Dfractional_avg_pool_op.cc255 const int64 in_cols = orig_input_tensor_shape_flat(2); in Compute() local
274 in_cols * in_rows * in_batch); in Compute()
281 const int64 in_max_col_index = in_cols - 1; in Compute()
301 const int64 in_index = (b * in_rows + in_r) * in_cols + in_c; in Compute()
Ddepthwise_conv_grad_op.cc135 args.in_cols = input_cols; \
294 const int64 base_output_index = (in_r * args.in_cols + in_c) * in_depth; in ComputeBackpropInput()
410 args.in_rows * args.in_cols * args.in_depth; in operator ()()
436 for (int64 in_c = 0; in_c < args.in_cols; ++in_c) { in operator ()()
452 const int64 shard_cost = args.in_rows * args.in_cols * args.out_depth; in operator ()()
467 for (int in_c = 0; in_c < args.in_cols; ++in_c) { in DepthwiseConvBackpropInputReference()
507 args.in_depth * (in_c + args.in_cols * (in_r + args.in_rows * b)); in DepthwiseConvBackpropInputReference()
870 args.in_rows * args.in_cols * args.in_depth; in operator ()()
965 in_c < args.in_cols) { in DepthwiseConvBackpropFilterReference()
973 (in_c + args.in_cols * (in_r + args.in_rows * b)); in DepthwiseConvBackpropFilterReference()
Dpooling_ops_common.h199 const int32 in_cols = params.tensor_in_cols; in SpatialMaxPool() local
220 for (int32 w = 0; w < in_cols; ++w) { in SpatialMaxPool()
234 const int32 in_offset = (b * in_rows + h) * in_cols + w; in SpatialMaxPool()
446 const int32 in_cols = params.tensor_in_cols;
467 for (int32 w = 0; w < in_cols; ++w) {
481 const int32 in_offset = (b * in_rows + h) * in_cols + w;
Dextract_image_patches_op.cc71 const int in_cols = input.dim_size(2); in Compute() local
92 GetWindowedOutputSize(in_cols, ksize_cols_eff, stride_cols, in Compute()
Dextract_volume_patches_op.cc78 const int in_cols = input.dim_size(3); in Compute() local
118 GetWindowedOutputSize(in_cols, ksize_cols, stride_cols, in Compute()
Dconv_ops_fused_impl.h583 int64 in_cols = GetTensorDim(input, params.data_format, 'W');
620 (patch_cols - 1) * dimensions.dilation_cols + 1 - in_cols);
626 int64 new_in_cols = in_cols + cols_odd;
642 in_cols = new_in_cols;
649 ShapeFromFormat(FORMAT_NCHW, in_batch, in_rows, in_cols, in_depths);
682 .set_width(in_cols)
756 in_cols}}, // in_cols
Dmaxpooling_op.cc105 const int32 in_cols = params.tensor_in_cols; in SpatialMaxPoolWithArgMaxHelper() local
129 for (int w = 0; w < in_cols; ++w) { in SpatialMaxPoolWithArgMaxHelper()
141 const int64 in_index = (b * in_rows + h) * in_cols + w; in SpatialMaxPoolWithArgMaxHelper()
158 out_arg_max_ref = (h * in_cols + w) * depth + d; in SpatialMaxPoolWithArgMaxHelper()
174 const int64 in_size = in_rows * in_cols * depth; in SpatialMaxPoolWithArgMaxHelper()
585 const int32 in_cols = params.tensor_in_cols; in SpatialMaxPoolGradGrad() local
612 const int w_end = std::min(w_start + window_cols, in_cols); in SpatialMaxPoolGradGrad()
622 const int in_index = (b * in_rows + h) * in_cols + w; in SpatialMaxPoolGradGrad()
Ddepthwise_conv_op.cc191 args.in_rows * args.in_cols * args.in_depth; in operator ()()
415 args.in_cols = input_cols; in Compute()
Dpooling_ops_3d.cc581 const int32 in_cols = params.tensor_in_cols; in launch() local
616 const int w_end = std::min(w_start + window_cols, in_cols); in launch()
630 ((b * in_planes + p) * in_rows + h) * in_cols + w; in launch()
Ddeep_conv2d.cc652 if (in_c < 0 || in_c >= args.in_cols) continue; in operator ()()
654 auto* in = input + (in_r * args.in_cols + in_c) * args.in_depth; in operator ()()
1114 const int64 input_image_size = args.in_rows * args.in_cols * in_depth; in operator ()()
/external/tensorflow/tensorflow/compiler/xla/tests/
Dpad_test.cc344 constexpr int64 in_cols = 35; in XLA_TEST_P() local
345 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P()
366 constexpr int64 in_cols = 129; in XLA_TEST_P() local
370 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P()
393 constexpr int64 in_cols = 129; in XLA_TEST_P() local
397 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P()
421 constexpr int64 in_cols = 11; in XLA_TEST_P() local
425 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P()
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_ExtractVolumePatches.pbtxt6 5-D Tensor with shape `[batch, in_planes, in_rows, in_cols, depth]`.
Dapi_def_ExtractImagePatches.pbtxt6 4-D Tensor with shape `[batch, in_rows, in_cols, depth]`.
/external/tensorflow/tensorflow/core/ops/
Darray_ops.cc2483 auto in_cols = c->Value(in_cols_dim); in __anon7c94107b3902() local
2494 in_cols, ksize_cols_eff, stride_cols, padding, &output_cols, in __anon7c94107b3902()
2589 auto in_cols = c->Value(in_cols_dim); in __anon7c94107b3a02() local
2603 in_cols, ksize_cols, stride_cols, padding, &output_cols, in __anon7c94107b3a02()
Dnn_ops.cc937 auto in_cols = c->Value(in_cols_dim); in __anon3e672dd81d02() local
952 in_cols, filter_cols_eff, stride_cols, padding, &output_cols, in __anon3e672dd81d02()
/external/tensorflow/tensorflow/stream_executor/cuda/
Dcuda_dnn.cc2611 int64 in_cols = input_desc.ndims() == 1 ? 1 : input_desc.width(); in ShouldIncludeWinogradNonfusedAlgo() local
2615 std::max(in_depths, out_depths) * in_cols * in_rows * in ShouldIncludeWinogradNonfusedAlgo()