/external/tensorflow/tensorflow/python/framework/ |
D | common_shapes.py | 204 in_rows = input_shape[1] 225 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 263 in_rows = input_shape[1] 286 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 328 in_rows = input_shape[1] 349 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 396 in_rows = input_shape[1] 412 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, ksize_r, 464 in_rows = input_shape[1] 484 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, ksize_r, [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | pooling_ops_3d_sycl.h | 34 const int in_rows, const int in_cols, const int out_planes, in SYCL3DPoolParams() 42 in_rows_(in_rows), in SYCL3DPoolParams() 58 const int in_rows, const int in_cols, in SYCL3DPoolParams() 63 : SYCL3DPoolParams(depth, batch, in_planes, in_rows, in_cols, in SYCL3DPoolParams() 125 const int in_rows, const int in_cols, const int out_planes, in MaxPool3DSYCL() argument 132 : p_(depth, batch, in_planes, in_rows, in_cols, out_planes, out_rows, in MaxPool3DSYCL() 191 const int in_rows = GetTensorDim(tensor_in, data_format, '1'); 207 MaxPool3DSYCL<T> max_pool(depth, batch, in_planes, in_rows, in_cols, 236 const int in_rows, const int in_cols, 245 : p_(depth, batch, in_planes, in_rows, in_cols, output_shape, window, [all …]
|
D | eigen_spatial_convolutions_test.cc | 670 const int in_rows = 8; in TEST() local 679 const int out_height = in_rows; in TEST() 682 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST() 712 r - off_r + j < in_rows && c - off_c + k < in_cols) { in TEST() 731 const int in_rows = 8; in TEST() local 740 const int out_height = in_rows; in TEST() 743 Tensor<float, 4, RowMajor> input(in_cols, in_rows, in_depth, in_channels); in TEST() 774 r - off_r + j < in_rows && c - off_c + k < in_cols) { in TEST() 793 const int in_rows = 5; in TEST() local 805 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST() [all …]
|
D | avgpooling_op.cc | 264 const int64 in_rows = output_shape.dim_size(1); in Compute() local 288 GetWindowedOutputSize(in_rows, window_rows, row_stride, in Compute() 299 in_rows, in_cols, window_rows, window_cols, row_stride, in Compute() 310 GetBroadcastSize(r, in_rows, window_rows, row_stride, in Compute() 328 int64 input_index = (b * in_rows + r_dst) * in_cols + c_dst; in Compute() 348 window_rows * window_cols * depth_window * in_rows * in_rows * in_cols; in Compute() 505 const int64 in_rows = output_shape.dim_size(1); in Compute() local 528 GetWindowedOutputSize(in_rows, window_rows, row_stride, in Compute() 536 in_rows, // height in Compute()
|
D | conv_ops_3d.cc | 215 int64 in_rows = GetTensorDim(input, data_format, '1'); in launch() local 233 0, (out_rows - 1) * strides[1] + filter_rows - in_rows); in launch() 244 const uint64 m = in_batch * in_planes * in_rows * in_cols; in launch() 266 } else if (filter_planes == in_planes && filter_rows == in_rows && in launch() 272 const uint64 k = in_planes * in_rows * in_cols * in_depth; in launch() 305 const int64 new_in_rows = in_rows + rows_odd; in launch() 322 in_rows = new_in_rows; in launch() 330 FORMAT_NCHW, in_batch, {{in_planes, in_rows, in_cols}}, in_depth); in launch() 355 .set_spatial_dim(DimIndex::Y, in_rows) in launch() 420 {{in_planes, in_rows, in_cols}}, in launch()
|
D | depthwise_conv_op_gpu.h | 46 return args.depth_multiplier == 1 && args.stride == 1 && args.in_rows <= 32 && in CanLaunchDepthwiseConv2dGPUSmall() 47 args.in_cols <= 32 && args.in_rows == args.out_rows && in CanLaunchDepthwiseConv2dGPUSmall() 52 (args.in_rows + 1) / 2 * args.in_cols; in CanLaunchDepthwiseConv2dGPUSmall() 59 return args.depth_multiplier == 1 && args.stride == 1 && args.in_rows <= 32 && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 60 args.in_cols <= 32 && args.in_rows == args.out_rows && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 63 args.pad_cols < args.filter_cols && block_height <= args.in_rows && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 78 const int in_height = args.in_rows; in DepthwiseConv2dGPUKernelNHWC() 185 const int in_height = args.in_rows; in DepthwiseConv2dGPUKernelNHWCSmall() 318 const int in_height = args.in_rows; in DepthwiseConv2dGPUKernelNCHW() 469 const int in_height = args.in_rows; in DepthwiseConv2dGPUKernelNCHWSmall() [all …]
|
D | deep_conv2d.h | 70 int in_rows; member 85 in_rows(0), in Conv2DArgs()
|
D | conv_ops.cc | 186 args.in_rows = input_rows; in Run() 599 int64 in_rows = GetTensorDim(input, data_format, 'H'); in operator ()() local 615 const uint64 m = in_batch * in_rows * in_cols; in operator ()() 637 } else if (patch_rows == in_rows && patch_cols == in_cols && in operator ()() 681 in_rows, patch_rows, row_dilation, row_stride, padding, &out_rows_check, in operator ()() 708 const int64 new_in_rows = in_rows + padding_rows_diff; in operator ()() 737 in_rows = new_in_rows; in operator ()() 744 ShapeFromFormat(FORMAT_NCHW, in_batch, in_rows, in_cols, in_depths); in operator ()() 766 .set_height(in_rows) in operator ()() 831 {{in_rows, // in_rows in operator ()()
|
D | fractional_avg_pool_op.cc | 254 const int64 in_rows = orig_input_tensor_shape_flat(1); in Compute() local 274 in_cols * in_rows * in_batch); in Compute() 280 const int64 in_max_row_index = in_rows - 1; in Compute() 301 const int64 in_index = (b * in_rows + in_r) * in_cols + in_c; in Compute()
|
D | depthwise_conv_op.h | 28 int in_rows; member 45 in_rows(0), in DepthwiseArgs() 230 if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 &&
|
D | pooling_ops_common.h | 198 const int32 in_rows = params.tensor_in_rows; in SpatialMaxPool() local 219 for (int32 h = 0; h < in_rows; ++h) { in SpatialMaxPool() 234 const int32 in_offset = (b * in_rows + h) * in_cols + w; in SpatialMaxPool() 445 const int32 in_rows = params.tensor_in_rows; 466 for (int32 h = 0; h < in_rows; ++h) { 481 const int32 in_offset = (b * in_rows + h) * in_cols + w;
|
D | extract_image_patches_op.cc | 70 const int in_rows = input.dim_size(1); in Compute() local 89 GetWindowedOutputSize(in_rows, ksize_rows_eff, stride_rows, in Compute()
|
D | extract_volume_patches_op.cc | 77 const int in_rows = input.dim_size(2); in Compute() local 115 GetWindowedOutputSize(in_rows, ksize_rows, stride_rows, in Compute()
|
D | depthwise_conv_grad_op.cc | 134 args.in_rows = input_rows; \ 410 args.in_rows * args.in_cols * args.in_depth; in operator ()() 435 for (int64 in_r = 0; in_r < args.in_rows; ++in_r) { in operator ()() 452 const int64 shard_cost = args.in_rows * args.in_cols * args.out_depth; in operator ()() 466 for (int in_r = 0; in_r < args.in_rows; ++in_r) { in DepthwiseConvBackpropInputReference() 507 args.in_depth * (in_c + args.in_cols * (in_r + args.in_rows * b)); in DepthwiseConvBackpropInputReference() 870 args.in_rows * args.in_cols * args.in_depth; in operator ()() 964 if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 && in DepthwiseConvBackpropFilterReference() 973 (in_c + args.in_cols * (in_r + args.in_rows * b)); in DepthwiseConvBackpropFilterReference()
|
D | conv_ops_fused_impl.h | 582 int64 in_rows = GetTensorDim(input, params.data_format, 'H'); 617 (patch_rows - 1) * dimensions.dilation_rows + 1 - in_rows); 625 int64 new_in_rows = in_rows + rows_odd; 641 in_rows = new_in_rows; 649 ShapeFromFormat(FORMAT_NCHW, in_batch, in_rows, in_cols, in_depths); 681 .set_height(in_rows) 755 {{in_rows, // in_rows
|
D | maxpooling_op.cc | 104 const int32 in_rows = params.tensor_in_rows; in SpatialMaxPoolWithArgMaxHelper() local 128 for (int h = 0; h < in_rows; ++h) { in SpatialMaxPoolWithArgMaxHelper() 141 const int64 in_index = (b * in_rows + h) * in_cols + w; in SpatialMaxPoolWithArgMaxHelper() 174 const int64 in_size = in_rows * in_cols * depth; in SpatialMaxPoolWithArgMaxHelper() 584 const int32 in_rows = params.tensor_in_rows; in SpatialMaxPoolGradGrad() local 610 const int h_end = std::min(h_start + window_rows, in_rows); in SpatialMaxPoolGradGrad() 622 const int in_index = (b * in_rows + h) * in_cols + w; in SpatialMaxPoolGradGrad()
|
D | depthwise_conv_op.cc | 191 args.in_rows * args.in_cols * args.in_depth; in operator ()() 414 args.in_rows = input_rows; in Compute()
|
D | pooling_ops_3d.cc | 580 const int32 in_rows = params.tensor_in_rows; in launch() local 614 const int h_end = std::min(h_start + window_rows, in_rows); in launch() 630 ((b * in_planes + p) * in_rows + h) * in_cols + w; in launch()
|
D | deep_conv2d.cc | 648 if (in_r < 0 || in_r >= args.in_rows) continue; in operator ()() 1114 const int64 input_image_size = args.in_rows * args.in_cols * in_depth; in operator ()()
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | pad_test.cc | 343 constexpr int64 in_rows = 35; in XLA_TEST_P() local 345 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P() 365 constexpr int64 in_rows = 129; in XLA_TEST_P() local 370 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P() 392 constexpr int64 in_rows = 129; in XLA_TEST_P() local 397 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P() 420 constexpr int64 in_rows = 8; in XLA_TEST_P() local 425 auto operand = absl::make_unique<Array2D<float>>(in_rows, in_cols); in XLA_TEST_P()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ExtractVolumePatches.pbtxt | 6 5-D Tensor with shape `[batch, in_planes, in_rows, in_cols, depth]`.
|
D | api_def_ExtractImagePatches.pbtxt | 6 4-D Tensor with shape `[batch, in_rows, in_cols, depth]`.
|
/external/tensorflow/tensorflow/core/ops/ |
D | array_ops.cc | 2482 auto in_rows = c->Value(in_rows_dim); in __anon7c94107b3902() local 2491 in_rows, ksize_rows_eff, stride_rows, padding, &output_rows, in __anon7c94107b3902() 2588 auto in_rows = c->Value(in_rows_dim); in __anon7c94107b3a02() local 2600 in_rows, ksize_rows, stride_rows, padding, &output_rows, in __anon7c94107b3a02()
|
D | nn_ops.cc | 936 auto in_rows = c->Value(in_rows_dim); in __anon3e672dd81d02() local 949 in_rows, filter_rows_eff, stride_rows, padding, &output_rows, in __anon3e672dd81d02()
|
/external/tensorflow/tensorflow/stream_executor/cuda/ |
D | cuda_dnn.cc | 2610 int64 in_rows = input_desc.height(); in ShouldIncludeWinogradNonfusedAlgo() local 2615 std::max(in_depths, out_depths) * in_cols * in_rows * in ShouldIncludeWinogradNonfusedAlgo()
|