/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_gather_ops.py | 36 def gather(params, indices, validate_indices=None, axis=0, batch_dims=0, argument 94 with ops.name_scope(name, 'RaggedGather', [params, indices]): 97 indices = ragged_tensor.convert_to_tensor_or_ragged_tensor( 98 indices, name='indices') 100 if ragged_tensor.is_ragged(indices): 101 return indices.with_values(gather(params, indices.values)) 104 return array_ops.gather(params, indices) 106 indices = ops.convert_to_tensor(indices) 107 if indices.shape.ndims is None: 111 indices=indices, [all …]
|
D | ragged_batch_gather_op_test.py | 49 indices=ragged_factory_ops.constant_value([[1, 2, 0], [], [], [0, 59 indices=[3, 2], 65 indices=[3, 2], 73 indices=[[2, 0], [0, 1], [1, 0]], 79 indices=[[2, 0], [0, 1], [0, 0]], 84 indices=ragged_factory_ops.constant_value([[2, 0, 2], [0], [1]]), 93 indices=[[1, 0], [0, 1], [0, 0]], 105 indices=[[[2, 0]], [[0, 1]], [[1, 0]]], 113 indices=ragged_factory_ops.constant_value( 122 indices=ragged_factory_ops.constant_value( [all …]
|
D | ragged_gather_nd_op_test.py | 50 indices=[[2], [0]], 56 indices=[[2, 1], [0, 0]], 62 indices=[[0, 0, 1], [1, 1, 2]], 70 indices=np.zeros([0], dtype=np.int32), 76 indices=np.zeros([3, 0], dtype=np.int32), 85 indices=np.zeros([1, 3, 0], dtype=np.int32), 93 indices=ragged_factory_ops.constant_value( 106 indices=[[1], [0]], 114 indices=[[1], [1]], 121 indices=ragged_factory_ops.constant_value([[[0]]], ragged_rank=1), [all …]
|
D | ragged_batch_gather_ops.py | 35 def batch_gather(params, indices, name=None): argument 67 if not (ragged_tensor.is_ragged(params) or ragged_tensor.is_ragged(indices)): 68 return array_ops.batch_gather(params, indices, name) 70 with ops.name_scope(name, 'RaggedBatchGather', [params, indices]): 73 indices = ragged_tensor.convert_to_tensor_or_ragged_tensor( 74 indices, name='indices') 75 indices_ndims = indices.shape.ndims 82 if ragged_tensor.is_ragged(indices): 88 checks = [check_ops.assert_equal(params.row_splits, indices.row_splits)] 91 batch_gather(params.values, indices.values), indices.row_splits) [all …]
|
D | ragged_gather_op_test.py | 38 indices = constant_op.constant([3, 1, 2, 1, 0]) 46 ragged_gather_ops.gather(ragged_params, indices), 54 indices = [2, 0, 2, 1] 56 ragged_gather_ops.gather(params, indices), [b'c', b'a', b'c', b'b']) 57 self.assertIsInstance(ragged_gather_ops.gather(params, indices), ops.Tensor) 62 indices = [2, 0, 2, 1] 64 ragged_gather_ops.gather(params, indices), 69 indices = ragged_factory_ops.constant([[2, 1], [1, 2, 0], [3]]) 71 ragged_gather_ops.gather(params, indices), 77 indices = ragged_factory_ops.constant([[2, 1], [1, 2, 0], [3]]) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | one_hot_op_test.py | 56 indices = np.asarray([0, 2, -1, 1], dtype=np.int64) 68 indices=indices, 77 indices=indices, 86 indices = np.asarray([0, 2, -1, 1], dtype=np.int64) 94 self._testBothOneHot(indices=indices, depth=depth, truth=truth) 98 indices=indices, depth=depth, axis=0, 126 indices = np.asarray([[0, 2, -1, 1], [1, 0, 1, -1]], dtype=np.int64) 139 indices=indices, 148 indices=indices, 157 indices = np.asarray([[0, 2, -1, 1], [1, 0, 1, -1]], dtype=np.int64) [all …]
|
D | scatter_nd_ops_test.py | 62 def _NumpyScatterNd(ref, indices, updates, op): argument 63 ixdim = indices.shape[-1] 64 num_updates = indices.size // ixdim 69 flat_indices = _FlatInnerDims(indices) 79 def _NumpyUpdate(ref, indices, updates): argument 80 return _NumpyScatterNd(ref, indices, updates, lambda p, u: u) 83 def _NumpyAdd(ref, indices, updates): argument 84 return _NumpyScatterNd(ref, indices, updates, lambda p, u: p + u) 87 def _NumpySub(ref, indices, updates): argument 88 return _NumpyScatterNd(ref, indices, updates, lambda p, u: p - u) [all …]
|
D | scatter_ops_test.py | 35 def _NumpyAdd(ref, indices, updates): argument 38 for i, indx in np.ndenumerate(indices): 42 def _NumpyAddScalar(ref, indices, update): argument 43 for _, indx in np.ndenumerate(indices): 47 def _NumpySub(ref, indices, updates): argument 48 for i, indx in np.ndenumerate(indices): 52 def _NumpySubScalar(ref, indices, update): argument 53 for _, indx in np.ndenumerate(indices): 57 def _NumpyMul(ref, indices, updates): argument 58 for i, indx in np.ndenumerate(indices): [all …]
|
D | gather_op_test.py | 51 for indices in 4, [1, 2, 2, 4, 5]: 54 indices_tf = constant_op.constant(indices) 57 np_val = params_np[indices] 69 indices = constant_op.constant(2) 70 gather_t = array_ops.gather(params, indices, axis=axis) 85 indices = constant_op.constant([0, 1, 0, 2]) 86 gather_t = array_ops.gather(params, indices, axis=axis) 101 indices = np.random.randint(shape[axis], size=indices_shape) 104 tf_indices = constant_op.constant(indices) 113 gather_np = np.take(params, indices, axis) [all …]
|
D | dynamic_stitch_op_test.py | 41 indices = [constant_op.constant(0), constant_op.constant(1)] 44 stitched_t = self.stitch_op(indices[::step], data) 53 indices = [ 59 stitched_t = self.stitch_op(indices[::step], data) 72 indices = [ 81 stitched_t = self.stitch_op(indices, data) 88 indices = [constant_op.constant([1, 6, 2, 3, 5, 0, 4, 7])] 90 stitched_t = self.stitch_op(indices, data) 97 indices = [ 107 stitched_t = self.stitch_op(indices, data) [all …]
|
D | string_split_op_test.py | 38 indices, values, shape = self.evaluate(tokens) 39 self.assertAllEqual(indices, [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0]]) 49 indices, values, shape = self.evaluate(tokens) 50 self.assertAllEqual(indices, [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], 67 indices, values, shape = self.evaluate(tokens) 69 indices, 79 indices, values, shape = self.evaluate(tokens) 81 indices, 98 indices, values, shape = self.evaluate(tokens) 99 self.assertAllEqual(indices, [[0, 0], [0, 1], [1, 0]]) [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | scatter_nd_op_test.py | 49 def _NumpyScatterNd(ref, indices, updates, op): argument 50 ixdim = indices.shape[-1] 51 num_updates = indices.size // ixdim 56 flat_indices = _FlatInnerDims(indices) 66 def _NumpyUpdate(indices, updates, shape): argument 68 return _NumpyScatterNd(ref, indices, updates, lambda p, u: u) 94 indices = np.array(all_indices[:num_updates]) 97 indices = indices[:num_updates // 2] 99 indices = np.append( 100 indices, [indices[np.random.randint(num_updates // 2)]], axis=0) [all …]
|
/external/python/cpython3/Lib/test/ |
D | test_slice.py | 144 actual = slice.indices(length) 154 actual = range(*slice.indices(length)) 159 self.assertEqual(slice(None ).indices(10), (0, 10, 1)) 160 self.assertEqual(slice(None, None, 2).indices(10), (0, 10, 2)) 161 self.assertEqual(slice(1, None, 2).indices(10), (1, 10, 2)) 162 self.assertEqual(slice(None, None, -1).indices(10), (9, -1, -1)) 163 self.assertEqual(slice(None, None, -2).indices(10), (9, -1, -2)) 164 self.assertEqual(slice(3, None, -2).indices(10), (3, -1, -2)) 166 self.assertEqual(slice(None, -9).indices(10), (0, 1, 1)) 167 self.assertEqual(slice(None, -10).indices(10), (0, 0, 1)) [all …]
|
/external/eigen/unsupported/Eigen/CXX11/src/Tensor/ |
D | TensorRef.h | 201 const array<Index, num_indices> indices{{firstIndex, otherIndices...}}; in operator() 202 return coeff(indices); in operator() 208 const array<Index, num_indices> indices{{firstIndex, otherIndices...}}; in coeffRef() 209 return coeffRef(indices); in coeffRef() 216 array<Index, 2> indices; in operator() local 217 indices[0] = i0; in operator() 218 indices[1] = i1; in operator() 219 return coeff(indices); in operator() 224 array<Index, 3> indices; in operator() local 225 indices[0] = i0; in operator() [all …]
|
/external/tensorflow/tensorflow/lite/tools/optimize/ |
D | quantization_utils.cc | 90 int indices[4]; in SymmetricPerChannelQuantization() local 95 for (indices[0] = 0; indices[0] < dimension[0]; indices[0]++) { in SymmetricPerChannelQuantization() 96 for (indices[1] = 0; indices[1] < dimension[1]; indices[1]++) { in SymmetricPerChannelQuantization() 97 for (indices[2] = 0; indices[2] < dimension[2]; indices[2]++) { in SymmetricPerChannelQuantization() 98 for (indices[3] = 0; indices[3] < dimension[3]; indices[3]++) { in SymmetricPerChannelQuantization() 99 int channel_idx = indices[channel_dim_index]; in SymmetricPerChannelQuantization() 100 const float val = input[Offset(tensor_dims, indices)]; in SymmetricPerChannelQuantization() 142 int indices[4]; in SymmetricPerChannelQuantizeValues() local 145 for (indices[0] = 0; indices[0] < dimension[0]; indices[0]++) { in SymmetricPerChannelQuantizeValues() 146 for (indices[1] = 0; indices[1] < dimension[1]; indices[1]++) { in SymmetricPerChannelQuantizeValues() [all …]
|
/external/libopus/silk/ |
D | decode_indices.c | 56 psDec->indices.signalType = (opus_int8)silk_RSHIFT( Ix, 1 ); in silk_decode_indices() 57 psDec->indices.quantOffsetType = (opus_int8)( Ix & 1 ); in silk_decode_indices() 65 … psDec->indices.GainsIndices[ 0 ] = (opus_int8)ec_dec_icdf( psRangeDec, silk_delta_gain_iCDF, 8 ); in silk_decode_indices() 68 …psDec->indices.GainsIndices[ 0 ] = (opus_int8)silk_LSHIFT( ec_dec_icdf( psRangeDec, silk_gain_iCD… in silk_decode_indices() 69 … psDec->indices.GainsIndices[ 0 ] += (opus_int8)ec_dec_icdf( psRangeDec, silk_uniform8_iCDF, 8 ); in silk_decode_indices() 74 … psDec->indices.GainsIndices[ i ] = (opus_int8)ec_dec_icdf( psRangeDec, silk_delta_gain_iCDF, 8 ); in silk_decode_indices() 80 …psDec->indices.NLSFIndices[ 0 ] = (opus_int8)ec_dec_icdf( psRangeDec, &psDec->psNLSF_CB->CB1_iCDF[… in silk_decode_indices() 81 silk_NLSF_unpack( ec_ix, pred_Q8, psDec->psNLSF_CB, psDec->indices.NLSFIndices[ 0 ] ); in silk_decode_indices() 90 psDec->indices.NLSFIndices[ i+1 ] = (opus_int8)( Ix - NLSF_QUANT_MAX_AMPLITUDE ); in silk_decode_indices() 95 …psDec->indices.NLSFInterpCoef_Q2 = (opus_int8)ec_dec_icdf( psRangeDec, silk_NLSF_interpolation_fac… in silk_decode_indices() [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_GatherNd.pbtxt | 10 name: "indices" 18 Values from `params` gathered from indices given by `indices`, with 19 shape `indices.shape[:-1] + params.shape[indices.shape[-1]:]`. 22 summary: "Gather slices from `params` into a Tensor with shape specified by `indices`." 24 `indices` is an K-dimensional integer tensor, best thought of as a 25 (K-1)-dimensional tensor of indices into `params`, where each element defines a 28 output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]] 30 Whereas in `tf.gather` `indices` defines slices into the first 31 dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the 32 first `N` dimensions of `params`, where `N = indices.shape[-1]`. [all …]
|
/external/tensorflow/tensorflow/contrib/factorization/python/ops/ |
D | factorization_ops_test_utils.py | 66 indices = np.nonzero(np_matrix) 73 [np.where(indices[0] == r)[0] for r in row_slices], 0) 74 indices = (indices[0][selected_ind], indices[1][selected_ind]) 78 [np.where(indices[1] == c)[0] for c in col_slices], 0) 79 indices = (indices[0][selected_ind], indices[1][selected_ind]) 82 shuffled_ind = [x for x in range(len(indices[0]))] 84 indices = (indices[0][shuffled_ind], indices[1][shuffled_ind]) 86 ind = (np.concatenate((np.expand_dims(indices[1], 1), 87 np.expand_dims(indices[0], 1)), 1).astype(np.int64) if 88 transpose else np.concatenate((np.expand_dims(indices[0], 1), [all …]
|
/external/python/cpython2/Lib/test/ |
D | test_slice.py | 80 self.assertEqual(slice(None ).indices(10), (0, 10, 1)) 81 self.assertEqual(slice(None, None, 2).indices(10), (0, 10, 2)) 82 self.assertEqual(slice(1, None, 2).indices(10), (1, 10, 2)) 83 self.assertEqual(slice(None, None, -1).indices(10), (9, -1, -1)) 84 self.assertEqual(slice(None, None, -2).indices(10), (9, -1, -2)) 85 self.assertEqual(slice(3, None, -2).indices(10), (3, -1, -2)) 87 self.assertEqual(slice(None, -9).indices(10), (0, 1, 1)) 88 self.assertEqual(slice(None, -10).indices(10), (0, 0, 1)) 89 self.assertEqual(slice(None, -11).indices(10), (0, 0, 1)) 90 self.assertEqual(slice(None, -10, -1).indices(10), (9, 0, -1)) [all …]
|
/external/mesa3d/src/gallium/drivers/softpipe/ |
D | sp_prim_vbuf.c | 160 sp_vbuf_draw_elements(struct vbuf_render *vbr, const ushort *indices, uint nr) in sp_vbuf_draw_elements() argument 174 get_vert(vertex_buffer, indices[i-0], stride) ); in sp_vbuf_draw_elements() 181 get_vert(vertex_buffer, indices[i-1], stride), in sp_vbuf_draw_elements() 182 get_vert(vertex_buffer, indices[i-0], stride) ); in sp_vbuf_draw_elements() 189 get_vert(vertex_buffer, indices[i-1], stride), in sp_vbuf_draw_elements() 190 get_vert(vertex_buffer, indices[i-0], stride) ); in sp_vbuf_draw_elements() 197 get_vert(vertex_buffer, indices[i-1], stride), in sp_vbuf_draw_elements() 198 get_vert(vertex_buffer, indices[i-0], stride) ); in sp_vbuf_draw_elements() 202 get_vert(vertex_buffer, indices[nr-1], stride), in sp_vbuf_draw_elements() 203 get_vert(vertex_buffer, indices[0], stride) ); in sp_vbuf_draw_elements() [all …]
|
/external/mesa3d/src/gallium/drivers/llvmpipe/ |
D | lp_setup_vbuf.c | 136 lp_setup_draw_elements(struct vbuf_render *vbr, const ushort *indices, uint nr) in lp_setup_draw_elements() argument 153 get_vert(vertex_buffer, indices[i-0], stride) ); in lp_setup_draw_elements() 160 get_vert(vertex_buffer, indices[i-1], stride), in lp_setup_draw_elements() 161 get_vert(vertex_buffer, indices[i-0], stride) ); in lp_setup_draw_elements() 168 get_vert(vertex_buffer, indices[i-1], stride), in lp_setup_draw_elements() 169 get_vert(vertex_buffer, indices[i-0], stride) ); in lp_setup_draw_elements() 176 get_vert(vertex_buffer, indices[i-1], stride), in lp_setup_draw_elements() 177 get_vert(vertex_buffer, indices[i-0], stride) ); in lp_setup_draw_elements() 181 get_vert(vertex_buffer, indices[nr-1], stride), in lp_setup_draw_elements() 182 get_vert(vertex_buffer, indices[0], stride) ); in lp_setup_draw_elements() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | state_ops.py | 252 def scatter_update(ref, indices, updates, use_locking=True, name=None): argument 298 return gen_state_ops.scatter_update(ref, indices, updates, 301 ref.handle, indices, ops.convert_to_tensor(updates, ref.dtype), 306 def scatter_nd_update(ref, indices, updates, use_locking=True, name=None): argument 361 ref, indices, updates, use_locking, name) 363 ref.handle, indices, ops.convert_to_tensor(updates, ref.dtype), 368 def scatter_add(ref, indices, updates, use_locking=False, name=None): argument 412 return gen_state_ops.scatter_add(ref, indices, updates, 415 ref.handle, indices, ops.convert_to_tensor(updates, ref.dtype), 420 def scatter_nd_add(ref, indices, updates, use_locking=False, name=None): argument [all …]
|
/external/eigen/Eigen/src/Core/ |
D | Transpositions.h | 33 indices() = other.indices(); 43 indices() = other.indices(); 49 Index size() const { return indices().size(); } in size() 51 Index rows() const { return indices().size(); } in rows() 53 Index cols() const { return indices().size(); } in cols() 56 inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } in coeff() 58 inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } in coeffRef() 60 inline const StorageIndex& operator()(Index i) const { return indices()(i); } in operator() 62 inline StorageIndex& operator()(Index i) { return indices()(i); } in operator() 64 inline const StorageIndex& operator[](Index i) const { return indices()(i); } [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | gather_nd.cc | 35 const TfLiteTensor* indices = GetInput(context, node, kIndices); in Prepare() local 51 switch (indices->type) { in Prepare() 58 TfLiteTypeGetName(indices->type)); in Prepare() 63 const int indices_rank = NumDimensions(indices); in Prepare() 64 const int indices_nd = SizeOfDimension(indices, indices_rank - 1); in Prepare() 88 output_shape->data[output_index++] = indices->dims->data[i]; in Prepare() 97 TfLiteStatus GatherNd(const TfLiteTensor* params, const TfLiteTensor* indices, in GatherNd() argument 101 GetTensorShape(indices), GetTensorData<IndicesT>(indices), in GatherNd() 108 const TfLiteTensor* indices, TfLiteTensor* output) { in EvalGatherNd() argument 111 return GatherNd<float, IndicesT>(params, indices, output); in EvalGatherNd() [all …]
|
/external/python/cpython3/Lib/idlelib/ |
D | parenmatch.py | 78 indices = (HyperParser(self.editwin, "insert") 80 self.finish_paren_event(indices) 92 indices = hp.get_surrounding_brackets(_openers[closer], True) 93 self.finish_paren_event(indices) 96 def finish_paren_event(self, indices): argument 97 if indices is None and self.BELL: 102 self.tagfuncs.get(self.STYLE, self.create_tag_expression)(self, indices) 120 def create_tag_opener(self, indices): argument 122 self.text.tag_add("paren", indices[0]) 125 def create_tag_parens(self, indices): argument [all …]
|