/external/tensorflow/tensorflow/contrib/linear_optimizer/python/ |
D | sdca_estimator_test.py | 44 def input_fn(): function 60 classifier.fit(input_fn=input_fn, steps=100) 61 loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 69 def input_fn(): function 82 classifier.fit(input_fn=input_fn, steps=100) 83 loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 89 def input_fn(): function 109 classifier.fit(input_fn=input_fn, steps=50) 110 metrics = classifier.evaluate(input_fn=input_fn, steps=1) 116 def input_fn(): function [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | linear_test.py | 83 def input_fn(): function 97 classifier.fit(input_fn=input_fn, steps=100) 98 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 99 classifier.fit(input_fn=input_fn, steps=200) 100 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 107 def input_fn(): function 123 classifier.fit(input_fn=input_fn, steps=100) 124 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 125 classifier.fit(input_fn=input_fn, steps=200) 126 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] [all …]
|
D | svm_test.py | 33 def input_fn(): function 46 svm_classifier.fit(input_fn=input_fn, steps=30) 47 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 59 def input_fn(): function 72 svm_classifier.fit(input_fn=input_fn, steps=30) 73 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 90 def input_fn(): function 104 svm_classifier.fit(input_fn=input_fn, steps=30) 105 metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) 114 def input_fn(): function [all …]
|
D | dnn_linear_combined_test.py | 221 estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) 224 estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) 227 estimator.predict(input_fn=test_data.iris_input_multiclass_fn) 277 classifier.fit(input_fn=_input_fn, steps=2) 297 input_fn=test_data.iris_input_multiclass_fn, steps=100, 348 classifier.fit(input_fn=_input_fn_float_label, steps=50) 370 classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) 372 input_fn=test_data.iris_input_logistic_fn, steps=100) 420 classifier.fit(input_fn=_input_fn, steps=100) 421 scores = classifier.evaluate(input_fn=_input_fn, steps=100) [all …]
|
D | debug_test.py | 63 def input_fn(): function 70 return input_fn 97 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 100 input_fn=_input_fn_builder(test_features, None)) 116 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 119 input_fn=_input_fn_builder(test_features, None)) 133 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 136 input_fn=_input_fn_builder(test_features, None)) 155 input_fn=_input_fn_builder(train_features, train_labels), steps=50) 158 input_fn=_input_fn_builder(test_features, None)) [all …]
|
D | estimators_test.py | 44 def input_fn(): function 70 estimator.fit(input_fn=input_fn, steps=1) 71 prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) 75 input_fn=input_fn, 85 def input_fn(): function 110 estimator.fit(input_fn=input_fn, steps=1) 111 prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) 115 input_fn=input_fn, 125 def input_fn(): function 151 estimator_with_fe_fn.fit(input_fn=input_fn, steps=1) [all …]
|
D | dnn_test.py | 212 dnn_estimator.fit(input_fn=_input_fn_train, steps=5) 213 scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) 287 classifier.fit(input_fn=_input_fn_float_label, steps=50) 303 input_fn = test_data.iris_input_logistic_fn 304 classifier.fit(input_fn=input_fn, steps=5) 305 scores = classifier.evaluate(input_fn=input_fn, steps=1) 327 classifier.fit(input_fn=_input_fn, steps=5) 328 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 395 classifier.fit(input_fn=_input_fn, steps=50) 397 scores = classifier.evaluate(input_fn=_input_fn, steps=1) [all …]
|
D | composable_model_test.py | 122 def input_fn(): function 137 classifier.fit(input_fn=input_fn, steps=1000) 138 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 139 classifier.fit(input_fn=input_fn, steps=2000) 140 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 147 def input_fn(): function 163 classifier.fit(input_fn=input_fn, steps=1000) 164 loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] 165 classifier.fit(input_fn=input_fn, steps=2000) 166 loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] [all …]
|
D | kmeans_test.py | 72 def input_fn(self, member in KMeansTestBase 163 kmeans.fit(input_fn=self.input_fn(), steps=1) 169 kmeans.fit(input_fn=self.input_fn(), steps=1) 171 input_fn=self.input_fn(batch_size=self.num_points), steps=1) 173 kmeans.fit(input_fn=self.input_fn(), steps=steps) 175 input_fn=self.input_fn(batch_size=self.num_points), steps=1) 194 input_fn=self.input_fn(), 198 input_fn=self.input_fn(batch_size=self.num_points), steps=1) 206 kmeans.predict_cluster_idx(input_fn=self.input_fn( 212 input_fn=lambda: (constant_op.constant(points), None), steps=1) [all …]
|
D | dnn.py | 398 def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, argument 425 input_fn=input_fn, 430 input_fn=input_fn, 439 def predict_classes(self, x=None, input_fn=None, batch_size=None, argument 460 input_fn=input_fn, 474 input_fn=None, argument 495 input_fn=input_fn, 506 input_fn=None, argument 520 input_fn=input_fn or default_input_fn, 675 input_fn=None, argument [all …]
|
D | svm.py | 164 def predict_classes(self, x=None, input_fn=None, batch_size=None, argument 170 input_fn=input_fn, 181 def predict_proba(self, x=None, input_fn=None, batch_size=None, outputs=None, argument 187 input_fn=input_fn, 198 input_fn=None, default_batch_size=1, argument 204 input_fn=input_fn, 213 input_fn=None, argument 222 input_fn=input_fn or default_input_fn,
|
D | estimator.py | 98 def _verify_input_args(x, y, input_fn, feed_fn, batch_size): argument 100 if input_fn is None: 116 def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): argument 134 _verify_input_args(x, y, input_fn, feed_fn, batch_size) 135 if input_fn is not None: 136 return input_fn, feed_fn 148 def infer_real_valued_columns_from_input_fn(input_fn): argument 164 features, _ = input_fn() 181 input_fn, _ = _get_input_fn( 182 x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) [all …]
|
D | linear.py | 510 def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, argument 537 input_fn=input_fn, 542 input_fn=input_fn, 550 def predict_classes(self, x=None, input_fn=None, batch_size=None, argument 571 input_fn=input_fn, 582 def predict_proba(self, x=None, input_fn=None, batch_size=None, argument 602 input_fn=input_fn, 613 input_fn=None, argument 626 input_fn=input_fn or default_input_fn, 781 def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, argument [all …]
|
D | dnn_linear_combined.py | 720 def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, argument 747 input_fn=input_fn, 752 input_fn=input_fn, 760 def predict_classes(self, x=None, input_fn=None, batch_size=None, argument 781 input_fn=input_fn, 793 self, x=None, input_fn=None, batch_size=None, as_iterable=True): argument 812 input_fn=input_fn, 823 input_fn=None, argument 835 input_fn=input_fn or default_input_fn, 1036 input_fn=None, argument [all …]
|
D | debug.py | 209 def predict_classes(self, input_fn=None, batch_size=None): argument 222 input_fn=input_fn, batch_size=batch_size, outputs=[key]) 226 input_fn=None, argument 239 input_fn=input_fn, 324 def predict_scores(self, input_fn=None, batch_size=None): argument 336 input_fn=input_fn, batch_size=batch_size, outputs=[key])
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
D | random_forest_test.py | 74 input_fn, predict_input_fn = _get_classification_input_fns() 75 classifier.fit(input_fn=input_fn, steps=100) 76 res = classifier.evaluate(input_fn=input_fn, steps=10) 81 predictions = list(classifier.predict(input_fn=predict_input_fn)) 98 input_fn, predict_input_fn = _get_regression_input_fns() 100 regressor.fit(input_fn=input_fn, steps=100) 101 res = regressor.evaluate(input_fn=input_fn, steps=10) 104 predictions = list(regressor.predict(input_fn=predict_input_fn)) 123 input_fn = numpy_io.numpy_input_fn( 133 classifier.fit(input_fn=input_fn, steps=100) [all …]
|
/external/tensorflow/tensorflow/contrib/factorization/python/ops/ |
D | gmm_test.py | 38 def input_fn(self, batch_size=None, points=None): member in GMMTest 68 clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None), 92 gmm.fit(input_fn=self.input_fn(), steps=0) 102 gmm.fit(input_fn=self.input_fn(), steps=0) 111 gmm.fit(input_fn=self.input_fn(), steps=1) 112 score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), 114 gmm.fit(input_fn=self.input_fn(), steps=10) 115 score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), 124 gmm.fit(input_fn=self.input_fn(), steps=60) 133 input_fn=self.input_fn(points=points, batch_size=num_points)): [all …]
|
D | kmeans_test.py | 72 def input_fn(self, member in KMeansTestBase 163 kmeans.train(input_fn=self.input_fn(), steps=1) 169 kmeans.train(input_fn=self.input_fn(), steps=1) 170 score1 = kmeans.score(input_fn=self.input_fn(batch_size=self.num_points)) 172 kmeans.train(input_fn=self.input_fn(), steps=steps) 173 score2 = kmeans.score(input_fn=self.input_fn(batch_size=self.num_points)) 192 input_fn=self.input_fn(), 195 score = kmeans.score(input_fn=self.input_fn(batch_size=self.num_points)) 201 input_fn = self.input_fn(batch_size=num_points, points=points, num_epochs=1) 203 assignments = list(kmeans.predict_cluster_index(input_fn)) [all …]
|
D | wals_test.py | 82 def input_fn(self, np_matrix, batch_size, mode, member in WALSMatrixFactorizationTest 260 input_fn = self.input_fn(np_matrix=self.input_matrix, 264 self._model.fit(input_fn=input_fn, steps=self.row_steps) 271 input_fn = self.input_fn(np_matrix=self.input_matrix, 275 self._model.fit(input_fn=input_fn, steps=self.col_steps) 282 input_fn = self.input_fn(np_matrix=self.input_matrix, 288 proj_input_fn = self.input_fn( 295 self._model.fit(input_fn=input_fn, steps=self.row_steps) 305 proj_input_fn = self.input_fn( 312 self._model.fit(input_fn=input_fn, steps=self.col_steps) [all …]
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | kernel_estimators_test.py | 88 input_fn=_linearly_separable_binary_input_fn, steps=100) 91 input_fn=_linearly_separable_binary_input_fn, steps=1) 100 logreg_classifier.predict_proba(input_fn= 119 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 121 input_fn=_linearly_inseparable_binary_input_fn, steps=1) 125 input_fn=_linearly_inseparable_binary_input_fn, as_iterable=False) 141 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 143 input_fn=_linearly_inseparable_binary_input_fn, steps=1) 157 input_fn=_linearly_inseparable_binary_input_fn, steps=50) 171 input_fn=_linearly_inseparable_binary_input_fn, steps=50) [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | estimator_test.py | 159 classifier.fit(input_fn=_train_input_fn, steps=15) 160 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 179 classifier.fit(input_fn=_train_input_fn, steps=15) 180 result_iter = classifier.predict(input_fn=_eval_input_fn) 206 model.fit(input_fn=_train_input_fn, steps=15) 207 model.evaluate(input_fn=_eval_input_fn, steps=1) 226 classifier.fit(input_fn=_train_input_fn, steps=15) 227 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 246 regressor.fit(input_fn=_train_input_fn, steps=15) 247 regressor.evaluate(input_fn=_eval_input_fn, steps=1) [all …]
|
D | dnn_tree_combined_estimator_test.py | 86 classifier.fit(input_fn=_train_input_fn, steps=5) 108 classifier.fit(input_fn=_train_input_fn, steps=15) 109 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 132 classifier.fit(input_fn=_train_input_fn, steps=15) 133 classifier.evaluate(input_fn=_eval_input_fn, steps=1) 166 est.train(input_fn=_train_input_fn, steps=1000) 169 res = est.evaluate(input_fn=_eval_input_fn, steps=1) 171 est.predict(input_fn=_eval_input_fn) 197 est.train(input_fn=_train_input_fn, steps=1000) 198 res = est.evaluate(input_fn=_eval_input_fn, steps=1) [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
D | pandas_io_test.py | 47 def callInputFnOnce(self, input_fn, session): argument 48 results = input_fn() 70 input_fn = pandas_io.pandas_input_fn( 73 features, target = self.callInputFnOnce(input_fn, session) 88 input_fn = pandas_io.pandas_input_fn( 91 results = input_fn() 117 input_fn = pandas_io.pandas_input_fn( 120 results = input_fn() 151 input_fn = pandas_io.pandas_input_fn( 154 features = self.callInputFnOnce(input_fn, session) [all …]
|
/external/tensorflow/tensorflow/contrib/predictor/ |
D | predictor_factories_test.py | 58 input_fn = testing_common.get_arithmetic_input_fn(core=False) 60 estimator, input_fn, output_alternative_key='sum') 64 input_fn = testing_common.get_arithmetic_input_fn(core=False) 66 estimator, input_fn, output_alternative_key='sum', 71 input_fn = testing_common.get_arithmetic_input_fn(core=True) 73 predictor_factories.from_contrib_estimator(estimator, input_fn) 77 input_fn = testing_common.get_arithmetic_input_fn(core=True) 78 predictor_factories.from_estimator(estimator, input_fn) 82 input_fn = testing_common.get_arithmetic_input_fn(core=True) 84 estimator, input_fn, config=config_pb2.ConfigProto()) [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
D | experiment.py | 386 input_fn=self._train_input_fn, 417 input_fn=self._eval_input_fn, 436 input_fn, argument 535 input_fn=input_fn, 638 input_fn=self._eval_input_fn, 664 input_fn=self._eval_input_fn, 683 input_fn=self._eval_input_fn, 776 input_fn=self._train_input_fn, 785 input_fn=self._eval_input_fn, 831 input_fn=self._train_input_fn, [all …]
|