/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 9 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 10 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 11 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 12 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 13 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 14 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 15 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 16 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 17 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 18 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… [all …]
|
D | test_manifest.txt | 17 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 18 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 19 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 20 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 21 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 22 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 23 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 24 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 25 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 26 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='VALID',strides=… [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | conv_utils_test.py | 30 def _get_const_output_shape(input_shape, dim): argument 31 return tuple([min(d, dim) for d in input_shape]) 166 def test_conv_kernel_mask_fc(self, *input_shape): argument 168 kernel_shape = input_shape 169 ndims = len(input_shape) 171 output_shape = _get_const_output_shape(input_shape, dim=1) 172 mask = np.ones(input_shape + output_shape, np.bool) 176 input_shape, 183 def test_conv_kernel_mask_diag(self, *input_shape): argument 184 ndims = len(input_shape) [all …]
|
D | tf_utils.py | 181 def convert_shapes(input_shape, to_tuples=True): argument 207 def _is_atomic_shape(input_shape): argument 209 if _is_shape_component(input_shape): 211 if isinstance(input_shape, tensor_shape.TensorShape): 213 if (isinstance(input_shape, (tuple, list)) and 214 all(_is_shape_component(ele) for ele in input_shape)): 218 def _convert_shape(input_shape): argument 219 input_shape = tensor_shape.TensorShape(input_shape) 221 input_shape = tuple(input_shape.as_list()) 222 return input_shape [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | pool_test.py | 148 def _test(self, input_shape, **kwargs): argument 152 np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 162 input_shape=[1, 1, 10, 1], 173 for input_shape in [[2, 9, 2], [2, 10, 2]]: 178 input_shape=input_shape, 188 input_shape=input_shape, 199 for input_shape in [[2, 9, 10, 2], [2, 10, 9, 2]]: 204 input_shape=input_shape, 214 input_shape=input_shape, 225 for input_shape in [[2, 9, 10, 11, 2], [2, 10, 9, 11, 2]]: [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | convolutional.py | 146 def build(self, input_shape): argument 147 input_shape = tensor_shape.TensorShape(input_shape) 152 if input_shape.dims[channel_axis].value is None: 155 input_dim = int(input_shape[channel_axis]) 186 input_shape, 213 def compute_output_shape(self, input_shape): argument 214 input_shape = tensor_shape.TensorShape(input_shape).as_list() 216 space = input_shape[1:-1] 226 return tensor_shape.TensorShape([input_shape[0]] + new_space + 229 space = input_shape[2:] [all …]
|
D | pooling.py | 83 def compute_output_shape(self, input_shape): argument 84 input_shape = tensor_shape.TensorShape(input_shape).as_list() 86 steps = input_shape[2] 87 features = input_shape[1] 89 steps = input_shape[1] 90 features = input_shape[2] 96 return tensor_shape.TensorShape([input_shape[0], features, length]) 98 return tensor_shape.TensorShape([input_shape[0], length, features]) 251 def compute_output_shape(self, input_shape): argument 252 input_shape = tensor_shape.TensorShape(input_shape).as_list() [all …]
|
D | pooling_test.py | 35 input_shape=(3, 4, 5)) 38 input_shape=(3, 4, 5)) 40 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5)) 43 input_shape=(3, 4, 5)) 48 model.add(keras.layers.Masking(mask_value=0., input_shape=(3, 4))) 62 input_shape=(3, 4, 5, 6)) 66 input_shape=(3, 5, 6, 4)) 70 input_shape=(3, 4, 5, 6)) 74 input_shape=(3, 5, 6, 4)) 81 input_shape=(3, 4, 3, 4, 3)) [all …]
|
D | core.py | 100 def compute_output_shape(self, input_shape): argument 101 return input_shape 164 def compute_output_shape(self, input_shape): argument 165 return input_shape 214 input_shape = array_ops.shape(inputs) 215 noise_shape = (input_shape[0], 1, input_shape[2]) 271 input_shape = array_ops.shape(inputs) 273 return (input_shape[0], input_shape[1], 1, 1) 275 return (input_shape[0], 1, 1, input_shape[3]) 329 input_shape = array_ops.shape(inputs) [all …]
|
D | merge.py | 87 def build(self, input_shape): argument 89 if not isinstance(input_shape, list): 91 if len(input_shape) < 2: 94 'Got ' + str(len(input_shape)) + ' inputs.') 95 batch_sizes = [s[0] for s in input_shape if s is not None] 101 'batch sizes. Got tensors with shapes : ' + str(input_shape)) 102 if input_shape[0] is None: 105 output_shape = input_shape[0][1:] 106 for i in range(1, len(input_shape)): 107 if input_shape[i] is None: [all …]
|
D | core_test.py | 39 keras.layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) 45 input_shape=(3, 2)) 55 input_shape=(2, 3, 4)) 61 input_shape=(2, 3, 4, 5)) 66 input_shape=(2, 3, 4, 5)) 72 input_shape=(2, 3, 4, 4, 5)) 77 input_shape=(2, 3, 4, 4, 5)) 87 input_shape=(3, 2)) 98 input_shape=(3, 2)) 130 def get_output_shape(input_shape): argument [all …]
|
D | kernelized.py | 156 def build(self, input_shape): argument 157 input_shape = tensor_shape.TensorShape(input_shape) 160 if input_shape.rank != 2: 163 input_shape.ndims)) 164 if input_shape.dims[1].value is None: 169 ndim=2, axes={1: input_shape.dims[1].value}) 170 input_dim = input_shape.dims[1].value 200 super(RandomFourierFeatures, self).build(input_shape) 209 def compute_output_shape(self, input_shape): argument 210 input_shape = tensor_shape.TensorShape(input_shape) [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | split_op.cc | 39 const TensorShape input_shape = ctx->InputShape(1); in Compile() local 48 int32 split_dim = split_dim_orig < 0 ? split_dim_orig + input_shape.dims() in Compile() 50 OP_REQUIRES(ctx, 0 <= split_dim && split_dim < input_shape.dims(), in Compile() 51 errors::InvalidArgument("-input rank(-", input_shape.dims(), in Compile() 53 input_shape.dims(), "), but got ", in Compile() 62 ctx, input_shape.dim_size(split_dim) % num_split == 0, in Compile() 66 split_dim_orig, " (size = ", input_shape.dim_size(split_dim), ") ", in Compile() 71 const int32 slice_size = input_shape.dim_size(split_dim) / num_split; in Compile() 75 std::vector<int64> begin(input_shape.dims(), 0); in Compile() 76 std::vector<int64> limits(input_shape.dims()); in Compile() [all …]
|
D | shape_op.cc | 39 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 40 Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()})); in Compile() 41 OP_REQUIRES_OK(ctx, TensorShapeToConstant(input_shape, &shape_constant)); in Compile() 59 const TensorShape input_shape = ctx->InputShape(i); in Compile() local 60 Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()})); in Compile() 61 OP_REQUIRES_OK(ctx, TensorShapeToConstant(input_shape, &shape_constant)); in Compile() 78 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 79 const int rank = input_shape.dims(); in Compile() 94 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 96 FastBoundsCheck(input_shape.num_elements(), in Compile() [all …]
|
D | unpack_op.cc | 47 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 50 if (axis < 0) axis += input_shape.dims(); in Compile() 52 OP_REQUIRES(ctx, 0 <= axis && axis < input_shape.dims(), in Compile() 54 -input_shape.dims(), ", ", in Compile() 55 input_shape.dims(), ")")); in Compile() 58 ctx, input_shape.dims() > 0 && input_shape.dim_size(axis) == num, in Compile() 60 ", got shape ", input_shape.DebugString())); in Compile() 62 auto output_shape = input_shape; in Compile() 67 std::vector<int64> start_indices(input_shape.dims(), 0); in Compile() 68 std::vector<int64> limit_indices(input_shape.dims()); in Compile() [all …]
|
D | spacetodepth_op.cc | 60 const std::vector<int64>& input_shape = in Compile() local 62 int input_rank = input_shape.size(); in Compile() 81 OP_REQUIRES(ctx, input_shape[1 + i] % block_size_ == 0, in Compile() 83 "input shape[", 1 + i, "]=", input_shape[1 + i], in Compile() 88 reshaped_shape.push_back(input_shape[0]); in Compile() 90 reshaped_shape.push_back(input_shape[1 + i] / block_size_); in Compile() 93 reshaped_shape.push_back(input_shape[feature_dim]); in Compile() 104 output_shape.push_back(input_shape[0]); in Compile() 106 output_shape.push_back(input_shape[1 + i] / block_size_); in Compile() 108 output_shape.push_back(input_shape[feature_dim] * block_elems); in Compile() [all …]
|
D | depthtospace_op.cc | 60 const std::vector<int64>& input_shape = in Compile() local 62 int input_rank = input_shape.size(); in Compile() 79 reshaped_shape.push_back(input_shape[0]); in Compile() 81 reshaped_shape.push_back(input_shape[1 + i]); in Compile() 88 reshaped_shape.push_back(input_shape[feature_dim] / block_elems); in Compile() 97 output_shape.push_back(input_shape[0]); in Compile() 99 output_shape.push_back(input_shape[1 + i] * block_size_); in Compile() 101 output_shape.push_back(input_shape[feature_dim] / block_elems); in Compile() 104 reshaped_shape.push_back(input_shape[0]); in Compile() 110 reshaped_shape.push_back(input_shape[feature_dim] / block_elems); in Compile() [all …]
|
D | slice_op.cc | 40 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 48 begin_tensor_shape.num_elements() == input_shape.dims() && in Compile() 49 size_tensor_shape.num_elements() == input_shape.dims(), in Compile() 52 input_shape.dims(), ", but got shapes ", in Compile() 56 const int input_dims = input_shape.dims(); in Compile() 66 size[i] = input_shape.dim_size(i) - begin[i]; in Compile() 73 if (input_shape.dim_size(i) == 0) { in Compile() 80 OP_REQUIRES(ctx, 0 <= b && b <= input_shape.dim_size(i), in Compile() 82 input_shape.dim_size(i), in Compile() 84 OP_REQUIRES(ctx, 0 <= s && b + s <= input_shape.dim_size(i), in Compile() [all …]
|
/external/tensorflow/tensorflow/python/framework/ |
D | common_shapes.py | 190 input_shape = op.inputs[0].get_shape().with_rank(4) 200 input_shape = [input_shape[0], input_shape[2], input_shape[3], 201 input_shape[1]] 203 batch_size = input_shape[0] 204 in_rows = input_shape[1] 205 in_cols = input_shape[2] 211 input_shape[3].assert_is_compatible_with(filter_shape[2]) 259 input_shape = op.inputs[0].get_shape().with_rank(4) 262 batch_size = input_shape[0] 263 in_rows = input_shape[1] [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | resize_nearest_neighbor_test.cc | 30 const RuntimeShape& input_shape, const std::vector<T>& input_data, in TestReferenceResizeNearestNeighbor() argument 39 op_params, input_shape, input_data.data(), output_size_shape, in TestReferenceResizeNearestNeighbor() 48 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 54 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 59 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 65 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 70 RuntimeShape input_shape = {1, 3, 3, 1}; in TEST() local 76 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 81 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 87 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() [all …]
|
/external/tensorflow/tensorflow/contrib/fused_conv/python/ops/ |
D | fused_conv2d_bias_activation_benchmark.py | 32 def build_conv_bias_relu_graph(device, input_shape, filter_shape, strides, argument 52 input_shape = [ 53 input_shape[0], input_shape[3], input_shape[1], input_shape[2] 56 inp = variables.Variable(random_ops.truncated_normal(input_shape)) 77 def build_fused_conv_bias_relu_graph(device, input_shape, filter_shape, strides, argument 97 input_shape = [ 98 input_shape[0], input_shape[3], input_shape[1], input_shape[2] 101 inp = variables.Variable(random_ops.truncated_normal(input_shape)) 134 def _run_graph(self, device, input_shape, filter_shape, strides, padding, argument 156 outputs = build_fused_conv_bias_relu_graph(device, input_shape, [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | blocks.py | 45 input_shape, argument 72 input_shape, 81 input_shape = (filters, input_shape[1] // curr_strides[0], 82 input_shape[2] // curr_strides[1]) 84 input_shape = (input_shape[0] // curr_strides[0], 85 input_shape[1] // curr_strides[1], filters) 120 input_shape, argument 144 f_input_shape = (input_shape[0] // 2,) + input_shape[1:] 145 g_input_shape = (filters // 2, input_shape[1] // strides[0], 146 input_shape[2] // strides[1]) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | concat_benchmark.py | 35 def build_graph(device, input_shape, variable, num_inputs, axis, grad): argument 51 inputs = [array_ops.zeros(input_shape) for _ in range(num_inputs)] 56 input_shape[0], 57 random.randint(max(1, input_shape[1] - 5), input_shape[1] + 5) 63 random.randint(max(1, input_shape[0] - 5), input_shape[0] + 5), 64 input_shape[1] 81 def _run_graph(self, device, input_shape, variable, num_inputs, axis, grad, argument 99 outputs = build_graph(device, input_shape, variable, num_inputs, axis, 112 "GB/sec" % (device, input_shape[0], input_shape[1], variable, 114 num_inputs * input_shape[0] * input_shape[1] * 4 * 2 * [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BatchToSpaceND.pbtxt | 6 N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, 23 `crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`. 30 input_shape[1], ..., input_shape[N-1]] 35 input_shape[1], block_shape[0], 37 input_shape[M], block_shape[M-1], 39 input_shape[M+1], ..., input_shape[N-1]] 44 input_shape[1] * block_shape[0], 46 input_shape[M] * block_shape[M-1], 48 input_shape[M+1], 50 input_shape[N-1]] [all …]
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/layers/ |
D | core_layers.py | 125 def build(self, input_shape): argument 126 input_shape = tensor_shape.TensorShape(input_shape) 128 if tensor_shape.dimension_value(input_shape[channel_axis]) is None: 131 input_dim = tensor_shape.dimension_value(input_shape[channel_axis]) 214 def compute_output_shape(self, input_shape): argument 215 input_shape = tensor_shape.TensorShape(input_shape).as_list() 217 space = input_shape[1:-1] 227 return tensor_shape.TensorShape([input_shape[0]] + new_space + 230 space = input_shape[2:] 240 return tensor_shape.TensorShape([input_shape[0], self.filters] + [all …]
|