/external/tensorflow/tensorflow/python/keras/ |
D | models.py | 53 def _clone_functional_model(model, input_tensors=None, share_weights=False): argument 89 if input_tensors is None: 91 input_tensors = [] 98 input_tensors.append(input_tensor) 105 input_tensors = nest.flatten(input_tensors) 107 for i in range(len(input_tensors)): 108 input_tensor = input_tensors[i] 121 input_tensors = input_tensors_ 123 for x, y in zip(model.inputs, input_tensors): 152 tensor in tensor_map for tensor in nest.flatten(node.input_tensors)): [all …]
|
D | models_test.py | 132 new_model = clone_fn(model, input_tensors=input_a) 142 new_model = clone_fn(model, input_tensors=input_a) 187 model, input_tensors=[input_a, input_b]) 200 new_model = clone_fn(model, input_tensors=[input_a, input_b]) 250 keras.models._clone_sequential_model(seq_model, input_tensors=[x, x]) 252 keras.models._clone_sequential_model(seq_model, input_tensors=y) 262 _ = keras.models.clone_model(model, input_tensors=[x]) 273 _ = keras.models.clone_model(model, input_tensors=[x]) 385 model, input_tensors=input_a, target_tensors=[target_a], 424 model, input_tensors=input_a, compile_clone=True, [all …]
|
/external/tensorflow/tensorflow/python/distribute/ |
D | all_reduce.py | 254 def build_ring_all_reduce(input_tensors, num_workers, num_subchunks, argument 277 if len(input_tensors) < 2: 279 input_tensors, shape = _flatten_tensors(input_tensors) 280 devices = [t.device for t in input_tensors] 284 input_tensors, devices, 297 def _build_ring_gather(input_tensors, devices, num_subchunks, argument 317 num_devices = len(input_tensors) 321 return input_tensors 322 shape = input_tensors[0].shape 332 splits, split_pad_len = _padded_split(input_tensors[d], num_chunks) [all …]
|
D | all_reduce_test.py | 94 input_tensors = [] 101 input_tensors.append(array_ops.identity(t8)) 102 return input_tensors, device_names 107 input_tensors, device_names = self._buildInput(1, 1) 109 output_tensors = ar._build_ring_gather(input_tensors, device_names, 1, 112 self.assertEqual(output_tensors, input_tensors) 114 input_tensors, device_names = self._buildInput(1, 4) 117 input_tensors, device_names, 2, pred_by_c_d, rank_by_c_d, math_ops.add) 120 self.assertEqual(len(output_tensors), len(input_tensors)) 121 num_chunks = 2 * len(input_tensors) [all …]
|
/external/tensorflow/tensorflow/core/ops/ |
D | array_ops_test.cc | 277 op.input_tensors.resize(2); in TEST() 283 op.input_tensors[0] = &in_t; in TEST() 308 op.input_tensors.resize(3); in TEST() 309 op.input_tensors[2] = &axis_dim_t; in TEST() 409 op.input_tensors.resize(2); in TEST() 430 op.input_tensors[1] = &paddings_t; in TEST() 440 op.input_tensors.resize(3); in TEST() 461 op.input_tensors[1] = &paddings_t; in TEST() 470 op.input_tensors.resize(2); in TEST() 494 op.input_tensors[1] = &paddings_t; in TEST() [all …]
|
D | image_ops_test.cc | 34 op.input_tensors.resize(2); in TEST() 48 op.input_tensors[1] = &size_tensor; in TEST() 183 op.input_tensors.resize(2); in TEST() 205 op.input_tensors[1] = &size_tensor; in TEST() 217 op.input_tensors.resize(4); in TEST() 233 op.input_tensors[3] = &size_tensor; in TEST() 248 op.input_tensors.resize(2); in TEST() 259 op.input_tensors[1] = &size_tensor; in TEST() 265 op.input_tensors.resize(4); in TEST() 275 op.input_tensors[3] = &image_size; in TEST() [all …]
|
D | math_ops_test.cc | 275 op.input_tensors.resize(3); in TEST() 287 op.input_tensors[0] = &start_t; in TEST() 290 op.input_tensors[1] = &limit_t; in TEST() 294 op.input_tensors[2] = &delta_t; in TEST() 318 op.input_tensors.resize(3); in TEST() 328 op.input_tensors[2] = &num_t; in TEST() 338 op.input_tensors.resize(3); in TEST() 349 op.input_tensors[2] = &num_segments_t; in TEST() 360 op.input_tensors.resize(3); in TEST() 373 op.input_tensors.resize(4); in TEST() [all …]
|
D | random_ops_test.cc | 26 op.input_tensors.resize(2); in TEST() 34 op.input_tensors[1] = &num_samples; in TEST() 42 op.input_tensors.resize(2); in TEST() 49 op.input_tensors[0] = &shape; in TEST() 57 op.input_tensors.resize(2); in TEST() 64 op.input_tensors[0] = &shape; in TEST()
|
D | data_flow_ops_test.cc | 148 op.input_tensors.push_back(nullptr); in TEST() 149 op.input_tensors.push_back(&tensor_5); in TEST() 152 op.input_tensors[0] = &tensor_2; in TEST() 153 op.input_tensors[1] = nullptr; in TEST() 157 op.input_tensors[1] = &tensor_5; in TEST() 242 op.input_tensors.push_back(nullptr); in TEST() 243 op.input_tensors.push_back(&n_tensor); in TEST() 274 op.input_tensors.push_back(nullptr); in TEST() 275 op.input_tensors.push_back(&n_tensor); in TEST()
|
D | spectral_ops_test.cc | 74 op.input_tensors.resize(2); in TEST() 76 op.input_tensors[1] = &fft_length; in TEST() 134 op.input_tensors.resize(2); in TEST() 136 op.input_tensors[1] = &fft_length; in TEST() 194 op.input_tensors.resize(2); in TEST() 196 op.input_tensors[1] = &fft_length; in TEST()
|
D | set_ops_test.cc | 26 op.input_tensors.resize(3); in TEST() 82 op.input_tensors.resize(5); in TEST() 127 op.input_tensors.resize(7); in TEST()
|
/external/tensorflow/tensorflow/lite/tools/accuracy/ |
D | run_tflite_model_op.cc | 31 Status ValidateInputsMatch(const OpInputList& input_tensors, in ValidateInputsMatch() argument 34 if (tflite_tensor_indices.size() != input_tensors.size()) { in ValidateInputsMatch() 37 " actual: ", input_tensors.size()); in ValidateInputsMatch() 40 for (int i = 0; i < input_tensors.size(); i++) { in ValidateInputsMatch() 47 const Tensor& tensor = input_tensors[i]; in ValidateInputsMatch() 86 OpInputList input_tensors; in Compute() local 87 OP_REQUIRES_OK(context, context->input_list("model_input", &input_tensors)); in Compute() 89 OP_REQUIRES_OK(context, ValidateInputsMatch(input_tensors, *interpreter_)); in Compute() 111 for (int i = 0; i < input_tensors.size(); i++) { in Compute() 114 auto tensor_bytes = input_tensors[i].tensor_data(); in Compute()
|
/external/tensorflow/tensorflow/lite/python/ |
D | lite.py | 247 input_tensors = [ 255 input_tensors, output_tensors, 259 for tensor in input_tensors: 301 input_tensors=input_tensors, 405 input_tensors, argument 429 self._input_tensors = input_tensors 457 def from_session(cls, sess, input_tensors, output_tensors): argument 470 return cls(graph_def, input_tensors, output_tensors) 541 input_tensors = _get_tensors_from_tensor_names( 545 _set_tensor_shapes(input_tensors, input_shapes) [all …]
|
D | convert.py | 232 def build_toco_convert_protos(input_tensors, argument 349 for idx, input_tensor in enumerate(input_tensors): 402 input_tensors=[], output_tensors=[], *args, **kwargs) 425 def toco_convert_impl(input_data, input_tensors, output_tensors, *args, argument 449 input_tensors, output_tensors, *args, **kwargs) 458 def toco_convert(input_data, input_tensors, output_tensors, *args, **kwargs): argument 481 return toco_convert_impl(input_data, input_tensors, output_tensors, *args,
|
/external/tensorflow/tensorflow/lite/ |
D | graph_info_test.cc | 96 EXPECT_EQ(generated_subgraphs[subgraph_index].input_tensors, in CheckPartitionSubgraphs() 97 expected_subgraphs[subgraph_index].input_tensors); in CheckPartitionSubgraphs() 141 expected_subgraph.input_tensors = {0}; in TEST() 161 expected_subgraph.input_tensors = {}; in TEST() 181 expected_subgraph.input_tensors = {0}; in TEST() 204 expected_subgraph0.input_tensors = {0}; in TEST() 209 expected_subgraph1.input_tensors = {1}; in TEST() 232 expected_subgraph0.input_tensors = {0}; in TEST() 263 expected_subgraph0.input_tensors = {0}; in TEST() 268 expected_subgraph1.input_tensors = {1}; in TEST() [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | mkl_concat_op.cc | 158 OpInputList input_tensors; in Compute() local 159 GetMklInputList(context, "values", &input_tensors); in Compute() 160 const int N = input_tensors.size(); in Compute() 185 : input_tensors[0].shape(); in Compute() 192 s.IsMklTensor() ? s.GetTfShape() : input_tensors[i].shape(); in Compute() 275 CallEigenVersion(context, input_tensors, mkl_input_shapes); in Compute() 287 dst_dims = TFShapeToMklDnnDims(input_tensors[0].shape()); in Compute() 303 if (input_tensors[k].NumElements() == 0) continue; in Compute() 306 srcs[k].SetUsrMem(src_md, &input_tensors[k]); in Compute() 314 if (input_tensors[k].NumElements() == 0) continue; in Compute() [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_feed.py | 359 def set_configuration_from_input_tensors(self, input_tensors): argument 373 if len(input_tensors) != self.number_of_tuple_elements: 375 % (str(input_tensors), self.number_of_tuple_elements)) 376 self.set_tuple_shapes([t.shape for t in input_tensors]) 377 self.set_tuple_types([t.dtype for t in input_tensors]) 379 def set_configuration_from_sharded_input_tensors(self, input_tensors): argument 403 number_of_shards = len(input_tensors) 405 for t in input_tensors: 410 str(input_tensors), self.number_of_tuple_elements)) 413 sharded_shapes = [[t[i].shape for t in input_tensors] [all …]
|
/external/tensorflow/tensorflow/contrib/bigtable/kernels/ |
D | bigtable_lookup_dataset_op.cc | 135 std::vector<Tensor> input_tensors; in GetNextInternal() local 137 input_impl_->GetNext(ctx, &input_tensors, end_of_sequence)); in GetNextInternal() 141 if (input_tensors.size() != 1) { in GetNextInternal() 146 input_tensors.size(), " tensors."); in GetNextInternal() 148 if (input_tensors[0].NumElements() == 0) { in GetNextInternal() 153 if (input_tensors[0].NumElements() == 1) { in GetNextInternal() 157 input_tensors[0].scalar<string>()(), dataset()->filter_, status); in GetNextInternal() 163 input_tensors[0].scalar<string>()(), in GetNextInternal()
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/utils/ |
D | saved_model_export_utils.py | 86 def build_standardized_signature_def(input_tensors, output_tensors, argument 108 if not input_tensors: 114 if _is_classification_problem(problem_type, input_tensors, output_tensors): 115 (_, examples), = input_tensors.items() 126 elif _is_regression_problem(problem_type, input_tensors, output_tensors): 127 (_, examples), = input_tensors.items() 131 return signature_def_utils.predict_signature_def(input_tensors, 150 def _is_classification_problem(problem_type, input_tensors, output_tensors): argument 155 len(input_tensors) == 1 and 160 def _is_regression_problem(problem_type, input_tensors, output_tensors): argument [all …]
|
D | saved_model_export_utils_test.py | 76 input_tensors = { 87 input_tensors, output_tensors, problem_type)) 107 input_tensors = { 118 input_tensors, output_tensors, problem_type)) 139 input_tensors = { 158 input_tensors, output_tensors, problem_type)) 186 input_tensors = { 204 input_tensors, output_tensors, problem_type)) 232 input_tensors = { 247 input_tensors, output_tensors, problem_type)) [all …]
|
/external/tensorflow/tensorflow/lite/testing/ |
D | generate_examples.py | 326 def toco_convert(graph_def_str, input_tensors, output_tensors, argument 343 input_arrays = [x[0] for x in input_tensors] 344 data_types = [_TF_TYPE_INFO[x[2]][1] for x in input_tensors] 348 shapes=[x[1] for x in input_tensors], 495 input_tensors = [(input_tensor.name.split(":")[0], input_tensor.shape, 512 graph_def.SerializeToString(), input_tensors, output_tensors, 1062 input_tensors = [input_tensor] 1069 input_tensors = [input_tensor, axis] 1073 return input_tensors, [out] 1325 input_tensors = [] [all …]
|
/external/tensorflow/tensorflow/python/saved_model/model_utils/ |
D | export_output_test.py | 67 input_tensors = { 75 actual_signature_def = export_output.as_signature_def(input_tensors) 100 input_tensors = { 108 actual_signature_def = export_output.as_signature_def(input_tensors) 132 input_tensors = { 144 actual_signature_def = export_output.as_signature_def(input_tensors) 174 input_tensors = { 185 actual_signature_def = export_output.as_signature_def(input_tensors)
|
/external/tensorflow/tensorflow/core/kernels/data/ |
D | repeat_dataset_op_test.cc | 65 std::vector<Tensor> input_tensors; member 136 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 208 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_F() 238 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 268 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 298 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 328 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_F() 363 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 400 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 437 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() [all …]
|
D | take_dataset_op_test.cc | 62 std::vector<Tensor> input_tensors; member 162 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 213 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_F() 243 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 274 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 305 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 335 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_F() 370 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 408 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() 446 std::vector<Tensor> inputs_for_tensor_slice_dataset = test_case.input_tensors; in TEST_P() [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | network.py | 301 input_tensors=self._nested_inputs, 993 for tensor in nest.flatten(node.input_tensors)): 997 lambda t: tensor_dict[str(id(t))], node.input_tensors) 1086 node_data = nest.pack_sequence_as(node.input_tensors, node_data) 1175 input_tensors = [] 1193 input_tensors.append( 1195 input_tensors = nest.pack_sequence_as(node_data, input_tensors) 1198 if input_tensors is not None: 1200 flat_input_tensors = nest.flatten(input_tensors) 1204 layer(input_tensors, **kwargs) [all …]
|