Searched refs:int_shape (Results 1 – 22 of 22) sorted by relevance
/external/tensorflow/tensorflow/python/keras/layers/ |
D | wrappers.py | 158 def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None): argument 180 if int_shape is None: 181 int_shape = K.int_shape(tensor)[start_idx:] 182 if not any(not s for s in int_shape): 183 return init_tuple + tuple(int_shape) 185 int_shape = list(int_shape) 186 for i, s in enumerate(int_shape): 188 int_shape[i] = shape[start_idx + i] 189 return init_tuple + tuple(int_shape) 224 input_shape = K.int_shape(inputs) [all …]
|
D | recurrent_v2.py | 218 input_shape = K.int_shape(inputs) 353 input_shape = K.int_shape(inputs) 589 input_shape = K.int_shape(inputs) 753 input_shape = K.int_shape(inputs)
|
D | lstm_test.py | 221 np.zeros(keras.backend.int_shape(layer.states[0])), 223 state_shapes = [keras.backend.int_shape(state) for state in layer.states] 230 np.ones(keras.backend.int_shape(layer.states[0])),
|
D | convolutional_recurrent.py | 312 shape = K.int_shape(state) 319 self.constants_spec = [InputSpec(shape=K.int_shape(constant)) 368 timesteps = K.int_shape(inputs)[1]
|
D | lstm_v2_test.py | 196 np.zeros(keras.backend.int_shape(layer.states[0])), 198 state_shapes = [keras.backend.int_shape(state) for state in layer.states] 205 np.ones(keras.backend.int_shape(layer.states[0])),
|
D | recurrent.py | 650 InputSpec(shape=K.int_shape(state)) for state in initial_state 656 InputSpec(shape=K.int_shape(constant)) for constant in constants 708 input_shape = K.int_shape(nest.flatten(inputs)[0]) 710 input_shape = K.int_shape(inputs)
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | outfeed_in_nested_computation_test.cc | 32 Shape int_shape = ShapeUtil::MakeShape(xla::S32, {}); in XLA_TEST_F() local 34 ShapeUtil::MakeTupleShape({int_shape, state_tuple_array_shape}); in XLA_TEST_F() 38 XlaOp num_iter = Infeed(&b, int_shape); in XLA_TEST_F() 46 Outfeed(loop_counter, int_shape, ""); in XLA_TEST_F() 90 local_client_->TransferFromOutfeed(&int_shape)); in XLA_TEST_F() 111 local_client_->TransferFromOutfeed(&int_shape)); in XLA_TEST_F()
|
/external/tensorflow/tensorflow/python/keras/ |
D | optimizers.py | 195 shapes = [K.int_shape(p) for p in params] 257 accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 324 shapes = [K.int_shape(p) for p in params] 397 shapes = [K.int_shape(p) for p in params] 494 ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 495 vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 497 vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 583 shapes = [K.int_shape(p) for p in params] 673 shapes = [K.int_shape(p) for p in params]
|
D | callbacks_v1.py | 187 shape = K.int_shape(w_img) 191 shape = K.int_shape(w_img) 198 shape = K.int_shape(w_img) 207 shape = K.int_shape(w_img)
|
D | callbacks.py | 1377 shape = K.int_shape(w_img) 1383 shape = K.int_shape(w_img) 1390 shape = K.int_shape(w_img) 1393 shape = K.int_shape(w_img)
|
D | metrics.py | 2720 K.int_shape(y_true)) == len(K.int_shape(y_pred))): 2744 K.int_shape(y_true)) == len(K.int_shape(y_pred))):
|
D | backend.py | 720 v._keras_shape = int_shape(value) 943 def int_shape(x): function 1454 for i, s in zip(int_shape(x), array_ops.unstack(array_ops.shape(x))): 1461 for i, s in zip(int_shape(y), array_ops.unstack(array_ops.shape(y))): 2409 original_shape = int_shape(x) 4806 kernel_shape = int_shape(kernel) 4940 bias_shape = int_shape(bias)
|
D | backend_test.py | 169 self.assertEqual(keras.backend.int_shape(x), (3, 4)) 173 self.assertEqual(keras.backend.int_shape(x), (None, 4))
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format.py | 458 if K.int_shape(layer.weights[0]) != weights[0].shape: 816 if K.int_shape(symbolic_weights[i]) != weight_values[i].shape: 819 ' has shape {}'.format(K.int_shape(
|
/external/tensorflow/tensorflow/contrib/tpu/python/tpu/ |
D | keras_tpu_variables.py | 337 v._keras_shape = backend.int_shape(value)
|
/external/tensorflow/tensorflow/contrib/keras/api/keras/backend/ |
D | __init__.py | 79 from tensorflow.python.keras.backend import int_shape
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | base_layer.py | 1937 self.input_shapes = nest.map_structure(backend.int_shape, input_tensors) 1939 self.output_shapes = nest.map_structure(backend.int_shape, output_tensors)
|
D | training.py | 391 shape = K.int_shape(self.outputs[i]) 2692 self._feed_input_shapes.append(K.int_shape(v))
|
D | topology_test.py | 883 self.assertEqual(keras.backend.int_shape(o[0]), (None, 3, 2, 1)) 884 self.assertEqual(keras.backend.int_shape(o[1]), (None, 3, 2, 1))
|
D | network.py | 314 self._feed_input_shapes.append(backend.int_shape(self.inputs[i]))
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.backend.pbtxt | 240 name: "int_shape"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.backend.pbtxt | 244 name: "int_shape"
|