/external/apache-commons-math/src/main/java/org/apache/commons/math/estimation/ |
D | LevenbergMarquardtEstimator.java | 290 jacobian[k * cols + pk] = diagR[pk]; in estimate() 324 sum += jacobian[index] * residuals[i]; in estimate() 390 work1[i] += jacobian[index] * dirJ; in estimate() 513 lmDir[permutation[i]] -= ypk * jacobian[index]; in determineLMParameter() 551 sum += jacobian[index] * work1[permutation[i]]; in determineLMParameter() 568 sum += jacobian[index] * qy[i]; in determineLMParameter() 629 work1[permutation[i]] -= jacobian[i * cols + pj] * tmp; in determineLMParameter() 680 jacobian[i * cols + pj] = jacobian[j * cols + permutation[i]]; in determineLMDirection() 711 double rkk = jacobian[k * cols + pk]; in determineLMDirection() 724 jacobian[k * cols + pk] = cos * rkk + sin * lmDiag[k]; in determineLMDirection() [all …]
|
D | AbstractEstimator.java | 58 protected double[] jacobian; field in AbstractEstimator 128 Arrays.fill(jacobian, 0); in updateJacobian() 134 jacobian[index++] = factor * wm.getPartial(parameters[j]); in updateJacobian() 229 sum += jacobian[k + i] * jacobian[k + j]; in getCovariances() 294 jacobian = new double[rows * cols]; in initializeEstimate()
|
/external/eigen/unsupported/Eigen/src/AutoDiff/ |
D | AutoDiffVector.h | 73 : m_values(other.values()), m_jacobian(other.jacobian()) in AutoDiffVector() 77 : m_values(other.values()), m_jacobian(other.jacobian()) in AutoDiffVector() 84 m_jacobian = other.jacobian(); 91 m_jacobian = other.jacobian(); 98 inline const JacobianType& jacobian() const { return m_jacobian; } in jacobian() function 99 inline JacobianType& jacobian() { return m_jacobian; } in jacobian() function 111 m_jacobian + other.jacobian()); 119 m_jacobian += other.jacobian(); 133 m_jacobian - other.jacobian()); 141 m_jacobian -= other.jacobian(); [all …]
|
/external/boringssl/src/crypto/fipsmodule/ec/ |
D | make_p256-x86_64-tests.go | 37 jacobian const 139 if aCoord == jacobian { 148 if bCoord == jacobian { 173 printTestCase(zero, zero, jacobian, zero, zero, jacobian) 180 printTestCase(gx, gy, affine, zero, zero, jacobian) 190 printTestCase(ax, ay, jacobian, bx, by, jacobian) 196 printTestCase(ax, ay, jacobian, ax, ay, jacobian)
|
/external/tensorflow/tensorflow/python/ops/ |
D | gradient_checker_v2.py | 158 jacobian = np.zeros((x_size, y_size), dtype=x.dtype.real_dtype.as_numpy_dtype) 177 jacobian[r_begin:r_end, col] += v.flat 179 jacobian[:, col] = grad.ravel().view(jacobian.dtype) 191 logging.vlog(1, "Theoretical Jacobian =\n%s", jacobian) 192 return jacobian 238 jacobian = np.zeros((x_size, y_size), dtype=x_dtype) 253 jacobian[row, :] = diff.ravel().view(y_dtype) 255 logging.vlog(1, "Numeric Jacobian =\n%s", jacobian) 256 return jacobian
|
D | gradient_checker.py | 93 jacobian = np.zeros((x_size, dy_size), 111 jacobian[r_begin:r_end, col] += v.flat 116 jacobian[:, col] = backprop.ravel().view(jacobian.dtype) 130 logging.vlog(1, "Theoretical Jacobian =\n%s", jacobian) 131 return jacobian 177 jacobian = np.zeros((x_size, y_size), dtype=x_dtype) 189 jacobian[row, :] = diff.ravel().view(y_dtype) 191 logging.vlog(1, "Numeric Jacobian =\n%s", jacobian) 192 return jacobian
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/general/ |
D | AbstractLeastSquaresOptimizer.java | 60 protected double[][] jacobian; field in AbstractLeastSquaresOptimizer 192 jacobian = jF.value(point); in updateJacobian() 193 if (jacobian.length != rows) { in updateJacobian() 195 jacobian.length, rows); in updateJacobian() 198 final double[] ji = jacobian[i]; in updateJacobian() 343 jF = f.jacobian(); in optimize() 352 jacobian = new double[rows][cols]; in optimize()
|
D | GaussNewtonOptimizer.java | 84 final double[] grad = jacobian[i]; in doOptimize()
|
/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | gradients_test.py | 149 pfor_jacobians = gradients.jacobian(output, weights, use_pfor=True) 151 gradients.jacobian(x, weights, use_pfor=True) for x in pfor_jacobians 157 gradients.jacobian(x, weights, use_pfor=False) for x in while_jacobians 321 return gradients.jacobian( 338 jacobians = gradients.jacobian(output, variables.trainable_variables()) 343 return gradients.jacobian( 370 for grad_func in [gradients.jacobian, gradients.batch_jacobian]: 379 jacobian_pfor = gradients.jacobian(y, x, use_pfor=True) 380 jacobian_while = gradients.jacobian(y, x, use_pfor=False) 397 jacobian = gradients.jacobian(y, x) [all …]
|
D | __init__.py | 25 from tensorflow.python.ops.parallel_for.gradients import jacobian
|
D | gradients.py | 28 def jacobian(output, inputs, use_pfor=True, parallel_iterations=None): function
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/fitting/ |
D | CurveFitter.java | 163 public MultivariateMatrixFunction jacobian() { in jacobian() method in CurveFitter.TheoreticalValuesFunction 168 final double[][] jacobian = new double[observations.size()][]; in jacobian() 172 jacobian[i++] = f.gradient(observed.getX(), point); in jacobian() 175 return jacobian; in jacobian()
|
/external/tensorflow/tensorflow/cc/framework/ |
D | gradient_checker.cc | 68 typename TTypes<JAC_T>::Matrix* jacobian, const int row, const int col, in SetJacobian() argument 70 (*jacobian)(row, col) = JAC_T{value}; in SetJacobian() 75 typename TTypes<JAC_T>::Matrix* jacobian, const int row, const int col, in SetJacobian() argument 77 (*jacobian)(row, col) = JAC_T{value.real()}; in SetJacobian() 79 (*jacobian)(row + 1, col) = JAC_T{value.imag()}; in SetJacobian() 81 (*jacobian)(row, col + 1) = JAC_T{value.imag()}; in SetJacobian() 162 auto jacobian = (*jacobian_ts)[x_idx * y_num + y_idx].matrix<JAC_T>(); in ComputeTheoreticalJacobianTranspose() local 165 SetJacobian<X_T, JAC_T>(&jacobian, r * x_stride, in ComputeTheoreticalJacobianTranspose() 251 auto jacobian = (*jacobian_ts)[x_idx * y_num + y_idx].matrix<JAC_T>(); in ComputeNumericJacobianTranspose() local 253 SetJacobian<Y_T, JAC_T>(&jacobian, r * x_stride + unit_dimension, in ComputeNumericJacobianTranspose()
|
/external/tensorflow/tensorflow/python/eager/ |
D | backprop_test.py | 1298 jacobian = g.jacobian(z, [x, y], 1301 return jacobian, answer 1305 jacobian, answer = self._jacobian(experimental_use_pfor=True) 1306 for j, a in zip(jacobian, answer): 1311 jacobian, answer = self._jacobian(experimental_use_pfor=False) 1312 for j, a in zip(jacobian, answer): 1322 jacobian, answer = _f() 1323 for j, a in zip(jacobian, answer): 1333 jacobian, answer = _f() 1334 for j, a in zip(jacobian, answer): [all …]
|
D | backprop.py | 965 def jacobian(self, member in GradientTape
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/ |
D | DifferentiableMultivariateVectorialFunction.java | 34 MultivariateMatrixFunction jacobian(); in jacobian() method
|
/external/eigen/unsupported/test/ |
D | autodiff.cpp | 136 void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const in operator ()() 144 if (jacobian) in operator ()() 146 T3 &j = *jacobian; in operator ()()
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.-gradient-tape.pbtxt | 18 name: "jacobian"
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.-gradient-tape.pbtxt | 18 name: "jacobian"
|
/external/eigen/unsupported/Eigen/ |
D | NonLinearOptimization | 61 * of the jacobian if ever). 78 * Both algorithms can use either the jacobian (provided by the user) or compute
|
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
D | LevenbergMarquardt.h | 223 JacobianType& jacobian() {return m_fjac; } in jacobian() function
|
/external/tensorflow/ |
D | RELEASE.md | 948 * Fix `tf.contrib.distributions.Affine` incorrectly computing log-det-jacobian.
|
/external/cldr/tools/java/org/unicode/cldr/util/data/transforms/ |
D | internal_raw_IPA.txt | 86286 jacobian %38692 dʒəkˈobiən
|
D | internal_raw_IPA-old.txt | 102295 jacobian ʤəkˈobiən
|