1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS64_CONSTANTS_MIPS64_H_
6 #define V8_MIPS64_CONSTANTS_MIPS64_H_
7
8 #include "src/base/logging.h"
9 #include "src/base/macros.h"
10 #include "src/globals.h"
11
12 // UNIMPLEMENTED_ macro for MIPS.
13 #ifdef DEBUG
14 #define UNIMPLEMENTED_MIPS() \
15 v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16 __FILE__, __LINE__, __func__)
17 #else
18 #define UNIMPLEMENTED_MIPS()
19 #endif
20
21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22
23 enum ArchVariants {
24 kMips64r2,
25 kMips64r6
26 };
27
28
29 #ifdef _MIPS_ARCH_MIPS64R2
30 static const ArchVariants kArchVariant = kMips64r2;
31 #elif _MIPS_ARCH_MIPS64R6
32 static const ArchVariants kArchVariant = kMips64r6;
33 #else
34 static const ArchVariants kArchVariant = kMips64r2;
35 #endif
36
37
38 enum Endianness { kLittle, kBig };
39
40 #if defined(V8_TARGET_LITTLE_ENDIAN)
41 static const Endianness kArchEndian = kLittle;
42 #elif defined(V8_TARGET_BIG_ENDIAN)
43 static const Endianness kArchEndian = kBig;
44 #else
45 #error Unknown endianness
46 #endif
47
48
49 // TODO(plind): consider renaming these ...
50 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
51 // Use floating-point coprocessor instructions. This flag is raised when
52 // -mhard-float is passed to the compiler.
53 const bool IsMipsSoftFloatABI = false;
54 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
55 // This flag is raised when -msoft-float is passed to the compiler.
56 // Although FPU is a base requirement for v8, soft-float ABI is used
57 // on soft-float systems with FPU kernel emulation.
58 const bool IsMipsSoftFloatABI = true;
59 #else
60 const bool IsMipsSoftFloatABI = true;
61 #endif
62
63 #if defined(V8_TARGET_LITTLE_ENDIAN)
64 const uint32_t kMipsLwrOffset = 0;
65 const uint32_t kMipsLwlOffset = 3;
66 const uint32_t kMipsSwrOffset = 0;
67 const uint32_t kMipsSwlOffset = 3;
68 const uint32_t kMipsLdrOffset = 0;
69 const uint32_t kMipsLdlOffset = 7;
70 const uint32_t kMipsSdrOffset = 0;
71 const uint32_t kMipsSdlOffset = 7;
72 #elif defined(V8_TARGET_BIG_ENDIAN)
73 const uint32_t kMipsLwrOffset = 3;
74 const uint32_t kMipsLwlOffset = 0;
75 const uint32_t kMipsSwrOffset = 3;
76 const uint32_t kMipsSwlOffset = 0;
77 const uint32_t kMipsLdrOffset = 7;
78 const uint32_t kMipsLdlOffset = 0;
79 const uint32_t kMipsSdrOffset = 7;
80 const uint32_t kMipsSdlOffset = 0;
81 #else
82 #error Unknown endianness
83 #endif
84
85 #if defined(V8_TARGET_LITTLE_ENDIAN)
86 const uint32_t kLeastSignificantByteInInt32Offset = 0;
87 const uint32_t kLessSignificantWordInDoublewordOffset = 0;
88 #elif defined(V8_TARGET_BIG_ENDIAN)
89 const uint32_t kLeastSignificantByteInInt32Offset = 3;
90 const uint32_t kLessSignificantWordInDoublewordOffset = 4;
91 #else
92 #error Unknown endianness
93 #endif
94
95 #ifndef __STDC_FORMAT_MACROS
96 #define __STDC_FORMAT_MACROS
97 #endif
98 #include <inttypes.h>
99
100 // Defines constants and accessor classes to assemble, disassemble and
101 // simulate MIPS32 instructions.
102 //
103 // See: MIPS32 Architecture For Programmers
104 // Volume II: The MIPS32 Instruction Set
105 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
106
107 namespace v8 {
108 namespace internal {
109
110 // TODO(sigurds): Change this value once we use relative jumps.
111 constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
112
113 // -----------------------------------------------------------------------------
114 // Registers and FPURegisters.
115
116 // Number of general purpose registers.
117 const int kNumRegisters = 32;
118 const int kInvalidRegister = -1;
119
120 // Number of registers with HI, LO, and pc.
121 const int kNumSimuRegisters = 35;
122
123 // In the simulator, the PC register is simulated as the 34th register.
124 const int kPCRegister = 34;
125
126 // Number coprocessor registers.
127 const int kNumFPURegisters = 32;
128 const int kInvalidFPURegister = -1;
129
130 // Number of MSA registers
131 const int kNumMSARegisters = 32;
132 const int kInvalidMSARegister = -1;
133
134 const int kInvalidMSAControlRegister = -1;
135 const int kMSAIRRegister = 0;
136 const int kMSACSRRegister = 1;
137 const int kMSARegSize = 128;
138 const int kMSALanesByte = kMSARegSize / 8;
139 const int kMSALanesHalf = kMSARegSize / 16;
140 const int kMSALanesWord = kMSARegSize / 32;
141 const int kMSALanesDword = kMSARegSize / 64;
142
143 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
144 const int kFCSRRegister = 31;
145 const int kInvalidFPUControlRegister = -1;
146 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
147 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
148 const uint64_t kFPU64InvalidResult =
149 static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
150 const int64_t kFPU64InvalidResultNegative =
151 static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
152
153 // FCSR constants.
154 const uint32_t kFCSRInexactFlagBit = 2;
155 const uint32_t kFCSRUnderflowFlagBit = 3;
156 const uint32_t kFCSROverflowFlagBit = 4;
157 const uint32_t kFCSRDivideByZeroFlagBit = 5;
158 const uint32_t kFCSRInvalidOpFlagBit = 6;
159 const uint32_t kFCSRNaN2008FlagBit = 18;
160
161 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
162 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
163 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
164 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
165 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
166 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
167
168 const uint32_t kFCSRFlagMask =
169 kFCSRInexactFlagMask |
170 kFCSRUnderflowFlagMask |
171 kFCSROverflowFlagMask |
172 kFCSRDivideByZeroFlagMask |
173 kFCSRInvalidOpFlagMask;
174
175 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
176
177 // 'pref' instruction hints
178 const int32_t kPrefHintLoad = 0;
179 const int32_t kPrefHintStore = 1;
180 const int32_t kPrefHintLoadStreamed = 4;
181 const int32_t kPrefHintStoreStreamed = 5;
182 const int32_t kPrefHintLoadRetained = 6;
183 const int32_t kPrefHintStoreRetained = 7;
184 const int32_t kPrefHintWritebackInvalidate = 25;
185 const int32_t kPrefHintPrepareForStore = 30;
186
187 // Actual value of root register is offset from the root array's start
188 // to take advantage of negative displacement values.
189 // TODO(sigurds): Choose best value.
190 constexpr int kRootRegisterBias = 256;
191
192 // Helper functions for converting between register numbers and names.
193 class Registers {
194 public:
195 // Return the name of the register.
196 static const char* Name(int reg);
197
198 // Lookup the register number for the name provided.
199 static int Number(const char* name);
200
201 struct RegisterAlias {
202 int reg;
203 const char* name;
204 };
205
206 static const int64_t kMaxValue = 0x7fffffffffffffffl;
207 static const int64_t kMinValue = 0x8000000000000000l;
208
209 private:
210 static const char* names_[kNumSimuRegisters];
211 static const RegisterAlias aliases_[];
212 };
213
214 // Helper functions for converting between register numbers and names.
215 class FPURegisters {
216 public:
217 // Return the name of the register.
218 static const char* Name(int reg);
219
220 // Lookup the register number for the name provided.
221 static int Number(const char* name);
222
223 struct RegisterAlias {
224 int creg;
225 const char* name;
226 };
227
228 private:
229 static const char* names_[kNumFPURegisters];
230 static const RegisterAlias aliases_[];
231 };
232
233 // Helper functions for converting between register numbers and names.
234 class MSARegisters {
235 public:
236 // Return the name of the register.
237 static const char* Name(int reg);
238
239 // Lookup the register number for the name provided.
240 static int Number(const char* name);
241
242 struct RegisterAlias {
243 int creg;
244 const char* name;
245 };
246
247 private:
248 static const char* names_[kNumMSARegisters];
249 static const RegisterAlias aliases_[];
250 };
251
252 // -----------------------------------------------------------------------------
253 // Instructions encoding constants.
254
255 // On MIPS all instructions are 32 bits.
256 typedef int32_t Instr;
257
258 // Special Software Interrupt codes when used in the presence of the MIPS
259 // simulator.
260 enum SoftwareInterruptCodes {
261 // Transition to C code.
262 call_rt_redirected = 0xfffff
263 };
264
265 // On MIPS Simulator breakpoints can have different codes:
266 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
267 // the simulator will run through them and print the registers.
268 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
269 // instructions (see Assembler::stop()).
270 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
271 // debugger.
272 const uint32_t kMaxWatchpointCode = 31;
273 const uint32_t kMaxStopCode = 127;
274 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
275
276
277 // ----- Fields offset and length.
278 const int kOpcodeShift = 26;
279 const int kOpcodeBits = 6;
280 const int kRsShift = 21;
281 const int kRsBits = 5;
282 const int kRtShift = 16;
283 const int kRtBits = 5;
284 const int kRdShift = 11;
285 const int kRdBits = 5;
286 const int kSaShift = 6;
287 const int kSaBits = 5;
288 const int kLsaSaBits = 2;
289 const int kFunctionShift = 0;
290 const int kFunctionBits = 6;
291 const int kLuiShift = 16;
292 const int kBp2Shift = 6;
293 const int kBp2Bits = 2;
294 const int kBp3Shift = 6;
295 const int kBp3Bits = 3;
296 const int kBaseShift = 21;
297 const int kBaseBits = 5;
298 const int kBit6Shift = 6;
299 const int kBit6Bits = 1;
300
301 const int kImm9Shift = 7;
302 const int kImm9Bits = 9;
303 const int kImm16Shift = 0;
304 const int kImm16Bits = 16;
305 const int kImm18Shift = 0;
306 const int kImm18Bits = 18;
307 const int kImm19Shift = 0;
308 const int kImm19Bits = 19;
309 const int kImm21Shift = 0;
310 const int kImm21Bits = 21;
311 const int kImm26Shift = 0;
312 const int kImm26Bits = 26;
313 const int kImm28Shift = 0;
314 const int kImm28Bits = 28;
315 const int kImm32Shift = 0;
316 const int kImm32Bits = 32;
317 const int kMsaImm8Shift = 16;
318 const int kMsaImm8Bits = 8;
319 const int kMsaImm5Shift = 16;
320 const int kMsaImm5Bits = 5;
321 const int kMsaImm10Shift = 11;
322 const int kMsaImm10Bits = 10;
323 const int kMsaImmMI10Shift = 16;
324 const int kMsaImmMI10Bits = 10;
325
326 // In branches and jumps immediate fields point to words, not bytes,
327 // and are therefore shifted by 2.
328 const int kImmFieldShift = 2;
329
330 const int kFrBits = 5;
331 const int kFrShift = 21;
332 const int kFsShift = 11;
333 const int kFsBits = 5;
334 const int kFtShift = 16;
335 const int kFtBits = 5;
336 const int kFdShift = 6;
337 const int kFdBits = 5;
338 const int kFCccShift = 8;
339 const int kFCccBits = 3;
340 const int kFBccShift = 18;
341 const int kFBccBits = 3;
342 const int kFBtrueShift = 16;
343 const int kFBtrueBits = 1;
344 const int kWtBits = 5;
345 const int kWtShift = 16;
346 const int kWsBits = 5;
347 const int kWsShift = 11;
348 const int kWdBits = 5;
349 const int kWdShift = 6;
350
351 // ----- Miscellaneous useful masks.
352 // Instruction bit masks.
353 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
354 const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
355 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
356 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
357 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
358 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
359 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
360 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
361 const int kImm5Mask = ((1 << 5) - 1);
362 const int kImm8Mask = ((1 << 8) - 1);
363 const int kImm10Mask = ((1 << 10) - 1);
364 const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
365 const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
366 const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
367 const int kMsaMI10Mask = (15U << 2);
368 const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
369 const int kMsaELMMask = (15U << 22);
370 const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
371 const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
372 const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
373 const int kMsaVECMask = (23U << 21);
374 const int kMsa2RMask = (7U << 18);
375 const int kMsa2RFMask = (15U << 17);
376 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
377 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
378 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
379 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
380 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
381 // Misc masks.
382 const int kHiMaskOf32 = 0xffff << 16; // Only to be used with 32-bit values
383 const int kLoMaskOf32 = 0xffff;
384 const int kSignMaskOf32 = 0x80000000; // Only to be used with 32-bit values
385 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
386 const int64_t kTop16MaskOf64 = (int64_t)0xffff << 48;
387 const int64_t kHigher16MaskOf64 = (int64_t)0xffff << 32;
388 const int64_t kUpper16MaskOf64 = (int64_t)0xffff << 16;
389 const int32_t kJalRawMark = 0x00000000;
390 const int32_t kJRawMark = 0xf0000000;
391 const int32_t kJumpRawMask = 0xf0000000;
392
393 // ----- MIPS Opcodes and Function Fields.
394 // We use this presentation to stay close to the table representation in
395 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
396 enum Opcode : uint32_t {
397 SPECIAL = 0U << kOpcodeShift,
398 REGIMM = 1U << kOpcodeShift,
399
400 J = ((0U << 3) + 2) << kOpcodeShift,
401 JAL = ((0U << 3) + 3) << kOpcodeShift,
402 BEQ = ((0U << 3) + 4) << kOpcodeShift,
403 BNE = ((0U << 3) + 5) << kOpcodeShift,
404 BLEZ = ((0U << 3) + 6) << kOpcodeShift,
405 BGTZ = ((0U << 3) + 7) << kOpcodeShift,
406
407 ADDI = ((1U << 3) + 0) << kOpcodeShift,
408 ADDIU = ((1U << 3) + 1) << kOpcodeShift,
409 SLTI = ((1U << 3) + 2) << kOpcodeShift,
410 SLTIU = ((1U << 3) + 3) << kOpcodeShift,
411 ANDI = ((1U << 3) + 4) << kOpcodeShift,
412 ORI = ((1U << 3) + 5) << kOpcodeShift,
413 XORI = ((1U << 3) + 6) << kOpcodeShift,
414 LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
415 DAUI = ((3U << 3) + 5) << kOpcodeShift,
416
417 BEQC = ((2U << 3) + 0) << kOpcodeShift,
418 COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
419 BEQL = ((2U << 3) + 4) << kOpcodeShift,
420 BNEL = ((2U << 3) + 5) << kOpcodeShift,
421 BLEZL = ((2U << 3) + 6) << kOpcodeShift,
422 BGTZL = ((2U << 3) + 7) << kOpcodeShift,
423
424 DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
425 DADDIU = ((3U << 3) + 1) << kOpcodeShift,
426 LDL = ((3U << 3) + 2) << kOpcodeShift,
427 LDR = ((3U << 3) + 3) << kOpcodeShift,
428 SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
429 MSA = ((3U << 3) + 6) << kOpcodeShift,
430 SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
431
432 LB = ((4U << 3) + 0) << kOpcodeShift,
433 LH = ((4U << 3) + 1) << kOpcodeShift,
434 LWL = ((4U << 3) + 2) << kOpcodeShift,
435 LW = ((4U << 3) + 3) << kOpcodeShift,
436 LBU = ((4U << 3) + 4) << kOpcodeShift,
437 LHU = ((4U << 3) + 5) << kOpcodeShift,
438 LWR = ((4U << 3) + 6) << kOpcodeShift,
439 LWU = ((4U << 3) + 7) << kOpcodeShift,
440
441 SB = ((5U << 3) + 0) << kOpcodeShift,
442 SH = ((5U << 3) + 1) << kOpcodeShift,
443 SWL = ((5U << 3) + 2) << kOpcodeShift,
444 SW = ((5U << 3) + 3) << kOpcodeShift,
445 SDL = ((5U << 3) + 4) << kOpcodeShift,
446 SDR = ((5U << 3) + 5) << kOpcodeShift,
447 SWR = ((5U << 3) + 6) << kOpcodeShift,
448
449 LL = ((6U << 3) + 0) << kOpcodeShift,
450 LWC1 = ((6U << 3) + 1) << kOpcodeShift,
451 BC = ((6U << 3) + 2) << kOpcodeShift,
452 LLD = ((6U << 3) + 4) << kOpcodeShift,
453 LDC1 = ((6U << 3) + 5) << kOpcodeShift,
454 POP66 = ((6U << 3) + 6) << kOpcodeShift,
455 LD = ((6U << 3) + 7) << kOpcodeShift,
456
457 PREF = ((6U << 3) + 3) << kOpcodeShift,
458
459 SC = ((7U << 3) + 0) << kOpcodeShift,
460 SWC1 = ((7U << 3) + 1) << kOpcodeShift,
461 BALC = ((7U << 3) + 2) << kOpcodeShift,
462 PCREL = ((7U << 3) + 3) << kOpcodeShift,
463 SCD = ((7U << 3) + 4) << kOpcodeShift,
464 SDC1 = ((7U << 3) + 5) << kOpcodeShift,
465 POP76 = ((7U << 3) + 6) << kOpcodeShift,
466 SD = ((7U << 3) + 7) << kOpcodeShift,
467
468 COP1X = ((1U << 4) + 3) << kOpcodeShift,
469
470 // New r6 instruction.
471 POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
472 POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
473 POP10 = ADDI, // beqzalc, bovc, beqc
474 POP26 = BLEZL, // bgezc, blezc, bgec/blec
475 POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
476 POP30 = DADDI, // bnezalc, bnvc, bnec
477 };
478
479 enum SecondaryField : uint32_t {
480 // SPECIAL Encoding of Function Field.
481 SLL = ((0U << 3) + 0),
482 MOVCI = ((0U << 3) + 1),
483 SRL = ((0U << 3) + 2),
484 SRA = ((0U << 3) + 3),
485 SLLV = ((0U << 3) + 4),
486 LSA = ((0U << 3) + 5),
487 SRLV = ((0U << 3) + 6),
488 SRAV = ((0U << 3) + 7),
489
490 JR = ((1U << 3) + 0),
491 JALR = ((1U << 3) + 1),
492 MOVZ = ((1U << 3) + 2),
493 MOVN = ((1U << 3) + 3),
494 BREAK = ((1U << 3) + 5),
495 SYNC = ((1U << 3) + 7),
496
497 MFHI = ((2U << 3) + 0),
498 CLZ_R6 = ((2U << 3) + 0),
499 CLO_R6 = ((2U << 3) + 1),
500 MFLO = ((2U << 3) + 2),
501 DCLZ_R6 = ((2U << 3) + 2),
502 DCLO_R6 = ((2U << 3) + 3),
503 DSLLV = ((2U << 3) + 4),
504 DLSA = ((2U << 3) + 5),
505 DSRLV = ((2U << 3) + 6),
506 DSRAV = ((2U << 3) + 7),
507
508 MULT = ((3U << 3) + 0),
509 MULTU = ((3U << 3) + 1),
510 DIV = ((3U << 3) + 2),
511 DIVU = ((3U << 3) + 3),
512 DMULT = ((3U << 3) + 4),
513 DMULTU = ((3U << 3) + 5),
514 DDIV = ((3U << 3) + 6),
515 DDIVU = ((3U << 3) + 7),
516
517 ADD = ((4U << 3) + 0),
518 ADDU = ((4U << 3) + 1),
519 SUB = ((4U << 3) + 2),
520 SUBU = ((4U << 3) + 3),
521 AND = ((4U << 3) + 4),
522 OR = ((4U << 3) + 5),
523 XOR = ((4U << 3) + 6),
524 NOR = ((4U << 3) + 7),
525
526 SLT = ((5U << 3) + 2),
527 SLTU = ((5U << 3) + 3),
528 DADD = ((5U << 3) + 4),
529 DADDU = ((5U << 3) + 5),
530 DSUB = ((5U << 3) + 6),
531 DSUBU = ((5U << 3) + 7),
532
533 TGE = ((6U << 3) + 0),
534 TGEU = ((6U << 3) + 1),
535 TLT = ((6U << 3) + 2),
536 TLTU = ((6U << 3) + 3),
537 TEQ = ((6U << 3) + 4),
538 SELEQZ_S = ((6U << 3) + 5),
539 TNE = ((6U << 3) + 6),
540 SELNEZ_S = ((6U << 3) + 7),
541
542 DSLL = ((7U << 3) + 0),
543 DSRL = ((7U << 3) + 2),
544 DSRA = ((7U << 3) + 3),
545 DSLL32 = ((7U << 3) + 4),
546 DSRL32 = ((7U << 3) + 6),
547 DSRA32 = ((7U << 3) + 7),
548
549 // Multiply integers in r6.
550 MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
551 MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
552 D_MUL_MUH = ((7U << 2) + 0), // DMUL, DMUH.
553 D_MUL_MUH_U = ((7U << 2) + 1), // DMUL_U, DMUH_U.
554 RINT = ((3U << 3) + 2),
555
556 MUL_OP = ((0U << 3) + 2),
557 MUH_OP = ((0U << 3) + 3),
558 DIV_OP = ((0U << 3) + 2),
559 MOD_OP = ((0U << 3) + 3),
560
561 DIV_MOD = ((3U << 3) + 2),
562 DIV_MOD_U = ((3U << 3) + 3),
563 D_DIV_MOD = ((3U << 3) + 6),
564 D_DIV_MOD_U = ((3U << 3) + 7),
565
566 // drotr in special4?
567
568 // SPECIAL2 Encoding of Function Field.
569 MUL = ((0U << 3) + 2),
570 CLZ = ((4U << 3) + 0),
571 CLO = ((4U << 3) + 1),
572 DCLZ = ((4U << 3) + 4),
573 DCLO = ((4U << 3) + 5),
574
575 // SPECIAL3 Encoding of Function Field.
576 EXT = ((0U << 3) + 0),
577 DEXTM = ((0U << 3) + 1),
578 DEXTU = ((0U << 3) + 2),
579 DEXT = ((0U << 3) + 3),
580 INS = ((0U << 3) + 4),
581 DINSM = ((0U << 3) + 5),
582 DINSU = ((0U << 3) + 6),
583 DINS = ((0U << 3) + 7),
584
585 BSHFL = ((4U << 3) + 0),
586 DBSHFL = ((4U << 3) + 4),
587 SC_R6 = ((4U << 3) + 6),
588 SCD_R6 = ((4U << 3) + 7),
589 LL_R6 = ((6U << 3) + 6),
590 LLD_R6 = ((6U << 3) + 7),
591
592 // SPECIAL3 Encoding of sa Field.
593 BITSWAP = ((0U << 3) + 0),
594 ALIGN = ((0U << 3) + 2),
595 WSBH = ((0U << 3) + 2),
596 SEB = ((2U << 3) + 0),
597 SEH = ((3U << 3) + 0),
598
599 DBITSWAP = ((0U << 3) + 0),
600 DALIGN = ((0U << 3) + 1),
601 DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
602 DSBH = ((0U << 3) + 2),
603 DSHD = ((0U << 3) + 5),
604
605 // REGIMM encoding of rt Field.
606 BLTZ = ((0U << 3) + 0) << 16,
607 BGEZ = ((0U << 3) + 1) << 16,
608 BLTZAL = ((2U << 3) + 0) << 16,
609 BGEZAL = ((2U << 3) + 1) << 16,
610 BGEZALL = ((2U << 3) + 3) << 16,
611 DAHI = ((0U << 3) + 6) << 16,
612 DATI = ((3U << 3) + 6) << 16,
613
614 // COP1 Encoding of rs Field.
615 MFC1 = ((0U << 3) + 0) << 21,
616 DMFC1 = ((0U << 3) + 1) << 21,
617 CFC1 = ((0U << 3) + 2) << 21,
618 MFHC1 = ((0U << 3) + 3) << 21,
619 MTC1 = ((0U << 3) + 4) << 21,
620 DMTC1 = ((0U << 3) + 5) << 21,
621 CTC1 = ((0U << 3) + 6) << 21,
622 MTHC1 = ((0U << 3) + 7) << 21,
623 BC1 = ((1U << 3) + 0) << 21,
624 S = ((2U << 3) + 0) << 21,
625 D = ((2U << 3) + 1) << 21,
626 W = ((2U << 3) + 4) << 21,
627 L = ((2U << 3) + 5) << 21,
628 PS = ((2U << 3) + 6) << 21,
629 // COP1 Encoding of Function Field When rs=S.
630
631 ADD_S = ((0U << 3) + 0),
632 SUB_S = ((0U << 3) + 1),
633 MUL_S = ((0U << 3) + 2),
634 DIV_S = ((0U << 3) + 3),
635 ABS_S = ((0U << 3) + 5),
636 SQRT_S = ((0U << 3) + 4),
637 MOV_S = ((0U << 3) + 6),
638 NEG_S = ((0U << 3) + 7),
639 ROUND_L_S = ((1U << 3) + 0),
640 TRUNC_L_S = ((1U << 3) + 1),
641 CEIL_L_S = ((1U << 3) + 2),
642 FLOOR_L_S = ((1U << 3) + 3),
643 ROUND_W_S = ((1U << 3) + 4),
644 TRUNC_W_S = ((1U << 3) + 5),
645 CEIL_W_S = ((1U << 3) + 6),
646 FLOOR_W_S = ((1U << 3) + 7),
647 RECIP_S = ((2U << 3) + 5),
648 RSQRT_S = ((2U << 3) + 6),
649 MADDF_S = ((3U << 3) + 0),
650 MSUBF_S = ((3U << 3) + 1),
651 CLASS_S = ((3U << 3) + 3),
652 CVT_D_S = ((4U << 3) + 1),
653 CVT_W_S = ((4U << 3) + 4),
654 CVT_L_S = ((4U << 3) + 5),
655 CVT_PS_S = ((4U << 3) + 6),
656 // COP1 Encoding of Function Field When rs=D.
657 ADD_D = ((0U << 3) + 0),
658 SUB_D = ((0U << 3) + 1),
659 MUL_D = ((0U << 3) + 2),
660 DIV_D = ((0U << 3) + 3),
661 SQRT_D = ((0U << 3) + 4),
662 ABS_D = ((0U << 3) + 5),
663 MOV_D = ((0U << 3) + 6),
664 NEG_D = ((0U << 3) + 7),
665 ROUND_L_D = ((1U << 3) + 0),
666 TRUNC_L_D = ((1U << 3) + 1),
667 CEIL_L_D = ((1U << 3) + 2),
668 FLOOR_L_D = ((1U << 3) + 3),
669 ROUND_W_D = ((1U << 3) + 4),
670 TRUNC_W_D = ((1U << 3) + 5),
671 CEIL_W_D = ((1U << 3) + 6),
672 FLOOR_W_D = ((1U << 3) + 7),
673 RECIP_D = ((2U << 3) + 5),
674 RSQRT_D = ((2U << 3) + 6),
675 MADDF_D = ((3U << 3) + 0),
676 MSUBF_D = ((3U << 3) + 1),
677 CLASS_D = ((3U << 3) + 3),
678 MIN = ((3U << 3) + 4),
679 MINA = ((3U << 3) + 5),
680 MAX = ((3U << 3) + 6),
681 MAXA = ((3U << 3) + 7),
682 CVT_S_D = ((4U << 3) + 0),
683 CVT_W_D = ((4U << 3) + 4),
684 CVT_L_D = ((4U << 3) + 5),
685 C_F_D = ((6U << 3) + 0),
686 C_UN_D = ((6U << 3) + 1),
687 C_EQ_D = ((6U << 3) + 2),
688 C_UEQ_D = ((6U << 3) + 3),
689 C_OLT_D = ((6U << 3) + 4),
690 C_ULT_D = ((6U << 3) + 5),
691 C_OLE_D = ((6U << 3) + 6),
692 C_ULE_D = ((6U << 3) + 7),
693
694 // COP1 Encoding of Function Field When rs=W or L.
695 CVT_S_W = ((4U << 3) + 0),
696 CVT_D_W = ((4U << 3) + 1),
697 CVT_S_L = ((4U << 3) + 0),
698 CVT_D_L = ((4U << 3) + 1),
699 BC1EQZ = ((2U << 2) + 1) << 21,
700 BC1NEZ = ((3U << 2) + 1) << 21,
701 // COP1 CMP positive predicates Bit 5..4 = 00.
702 CMP_AF = ((0U << 3) + 0),
703 CMP_UN = ((0U << 3) + 1),
704 CMP_EQ = ((0U << 3) + 2),
705 CMP_UEQ = ((0U << 3) + 3),
706 CMP_LT = ((0U << 3) + 4),
707 CMP_ULT = ((0U << 3) + 5),
708 CMP_LE = ((0U << 3) + 6),
709 CMP_ULE = ((0U << 3) + 7),
710 CMP_SAF = ((1U << 3) + 0),
711 CMP_SUN = ((1U << 3) + 1),
712 CMP_SEQ = ((1U << 3) + 2),
713 CMP_SUEQ = ((1U << 3) + 3),
714 CMP_SSLT = ((1U << 3) + 4),
715 CMP_SSULT = ((1U << 3) + 5),
716 CMP_SLE = ((1U << 3) + 6),
717 CMP_SULE = ((1U << 3) + 7),
718 // COP1 CMP negative predicates Bit 5..4 = 01.
719 CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
720 CMP_OR = ((2U << 3) + 1),
721 CMP_UNE = ((2U << 3) + 2),
722 CMP_NE = ((2U << 3) + 3),
723 CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
724 CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
725 CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
726 CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
727 CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
728 CMP_SOR = ((3U << 3) + 1),
729 CMP_SUNE = ((3U << 3) + 2),
730 CMP_SNE = ((3U << 3) + 3),
731 CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
732 CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
733 CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
734 CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
735
736 SEL = ((2U << 3) + 0),
737 MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
738 MOVZ_C = ((2U << 3) + 2), // COP1 on FPR registers.
739 MOVN_C = ((2U << 3) + 3), // COP1 on FPR registers.
740 SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
741 SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
742
743 // COP1 Encoding of Function Field When rs=PS.
744
745 // COP1X Encoding of Function Field.
746 MADD_S = ((4U << 3) + 0),
747 MADD_D = ((4U << 3) + 1),
748 MSUB_S = ((5U << 3) + 0),
749 MSUB_D = ((5U << 3) + 1),
750
751 // PCREL Encoding of rt Field.
752 ADDIUPC = ((0U << 2) + 0),
753 LWPC = ((0U << 2) + 1),
754 LWUPC = ((0U << 2) + 2),
755 LDPC = ((0U << 3) + 6),
756 // reserved ((1U << 3) + 6),
757 AUIPC = ((3U << 3) + 6),
758 ALUIPC = ((3U << 3) + 7),
759
760 // POP66 Encoding of rs Field.
761 JIC = ((0U << 5) + 0),
762
763 // POP76 Encoding of rs Field.
764 JIALC = ((0U << 5) + 0),
765
766 // COP1 Encoding of rs Field for MSA Branch Instructions
767 BZ_V = (((1U << 3) + 3) << kRsShift),
768 BNZ_V = (((1U << 3) + 7) << kRsShift),
769 BZ_B = (((3U << 3) + 0) << kRsShift),
770 BZ_H = (((3U << 3) + 1) << kRsShift),
771 BZ_W = (((3U << 3) + 2) << kRsShift),
772 BZ_D = (((3U << 3) + 3) << kRsShift),
773 BNZ_B = (((3U << 3) + 4) << kRsShift),
774 BNZ_H = (((3U << 3) + 5) << kRsShift),
775 BNZ_W = (((3U << 3) + 6) << kRsShift),
776 BNZ_D = (((3U << 3) + 7) << kRsShift),
777
778 // MSA: Operation Field for MI10 Instruction Formats
779 MSA_LD = (8U << 2),
780 MSA_ST = (9U << 2),
781 LD_B = ((8U << 2) + 0),
782 LD_H = ((8U << 2) + 1),
783 LD_W = ((8U << 2) + 2),
784 LD_D = ((8U << 2) + 3),
785 ST_B = ((9U << 2) + 0),
786 ST_H = ((9U << 2) + 1),
787 ST_W = ((9U << 2) + 2),
788 ST_D = ((9U << 2) + 3),
789
790 // MSA: Operation Field for I5 Instruction Format
791 ADDVI = ((0U << 23) + 6),
792 SUBVI = ((1U << 23) + 6),
793 MAXI_S = ((2U << 23) + 6),
794 MAXI_U = ((3U << 23) + 6),
795 MINI_S = ((4U << 23) + 6),
796 MINI_U = ((5U << 23) + 6),
797 CEQI = ((0U << 23) + 7),
798 CLTI_S = ((2U << 23) + 7),
799 CLTI_U = ((3U << 23) + 7),
800 CLEI_S = ((4U << 23) + 7),
801 CLEI_U = ((5U << 23) + 7),
802 LDI = ((6U << 23) + 7), // I10 instruction format
803 I5_DF_b = (0U << 21),
804 I5_DF_h = (1U << 21),
805 I5_DF_w = (2U << 21),
806 I5_DF_d = (3U << 21),
807
808 // MSA: Operation Field for I8 Instruction Format
809 ANDI_B = ((0U << 24) + 0),
810 ORI_B = ((1U << 24) + 0),
811 NORI_B = ((2U << 24) + 0),
812 XORI_B = ((3U << 24) + 0),
813 BMNZI_B = ((0U << 24) + 1),
814 BMZI_B = ((1U << 24) + 1),
815 BSELI_B = ((2U << 24) + 1),
816 SHF_B = ((0U << 24) + 2),
817 SHF_H = ((1U << 24) + 2),
818 SHF_W = ((2U << 24) + 2),
819
820 MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
821
822 // MSA: Operation Field for VEC Instruction Formats
823 AND_V = (((0U << 2) + 0) << 21),
824 OR_V = (((0U << 2) + 1) << 21),
825 NOR_V = (((0U << 2) + 2) << 21),
826 XOR_V = (((0U << 2) + 3) << 21),
827 BMNZ_V = (((1U << 2) + 0) << 21),
828 BMZ_V = (((1U << 2) + 1) << 21),
829 BSEL_V = (((1U << 2) + 2) << 21),
830
831 // MSA: Operation Field for 2R Instruction Formats
832 MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
833 FILL = (0U << 18),
834 PCNT = (1U << 18),
835 NLOC = (2U << 18),
836 NLZC = (3U << 18),
837 MSA_2R_DF_b = (0U << 16),
838 MSA_2R_DF_h = (1U << 16),
839 MSA_2R_DF_w = (2U << 16),
840 MSA_2R_DF_d = (3U << 16),
841
842 // MSA: Operation Field for 2RF Instruction Formats
843 MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
844 FCLASS = (0U << 17),
845 FTRUNC_S = (1U << 17),
846 FTRUNC_U = (2U << 17),
847 FSQRT = (3U << 17),
848 FRSQRT = (4U << 17),
849 FRCP = (5U << 17),
850 FRINT = (6U << 17),
851 FLOG2 = (7U << 17),
852 FEXUPL = (8U << 17),
853 FEXUPR = (9U << 17),
854 FFQL = (10U << 17),
855 FFQR = (11U << 17),
856 FTINT_S = (12U << 17),
857 FTINT_U = (13U << 17),
858 FFINT_S = (14U << 17),
859 FFINT_U = (15U << 17),
860 MSA_2RF_DF_w = (0U << 16),
861 MSA_2RF_DF_d = (1U << 16),
862
863 // MSA: Operation Field for 3R Instruction Format
864 SLL_MSA = ((0U << 23) + 13),
865 SRA_MSA = ((1U << 23) + 13),
866 SRL_MSA = ((2U << 23) + 13),
867 BCLR = ((3U << 23) + 13),
868 BSET = ((4U << 23) + 13),
869 BNEG = ((5U << 23) + 13),
870 BINSL = ((6U << 23) + 13),
871 BINSR = ((7U << 23) + 13),
872 ADDV = ((0U << 23) + 14),
873 SUBV = ((1U << 23) + 14),
874 MAX_S = ((2U << 23) + 14),
875 MAX_U = ((3U << 23) + 14),
876 MIN_S = ((4U << 23) + 14),
877 MIN_U = ((5U << 23) + 14),
878 MAX_A = ((6U << 23) + 14),
879 MIN_A = ((7U << 23) + 14),
880 CEQ = ((0U << 23) + 15),
881 CLT_S = ((2U << 23) + 15),
882 CLT_U = ((3U << 23) + 15),
883 CLE_S = ((4U << 23) + 15),
884 CLE_U = ((5U << 23) + 15),
885 ADD_A = ((0U << 23) + 16),
886 ADDS_A = ((1U << 23) + 16),
887 ADDS_S = ((2U << 23) + 16),
888 ADDS_U = ((3U << 23) + 16),
889 AVE_S = ((4U << 23) + 16),
890 AVE_U = ((5U << 23) + 16),
891 AVER_S = ((6U << 23) + 16),
892 AVER_U = ((7U << 23) + 16),
893 SUBS_S = ((0U << 23) + 17),
894 SUBS_U = ((1U << 23) + 17),
895 SUBSUS_U = ((2U << 23) + 17),
896 SUBSUU_S = ((3U << 23) + 17),
897 ASUB_S = ((4U << 23) + 17),
898 ASUB_U = ((5U << 23) + 17),
899 MULV = ((0U << 23) + 18),
900 MADDV = ((1U << 23) + 18),
901 MSUBV = ((2U << 23) + 18),
902 DIV_S_MSA = ((4U << 23) + 18),
903 DIV_U = ((5U << 23) + 18),
904 MOD_S = ((6U << 23) + 18),
905 MOD_U = ((7U << 23) + 18),
906 DOTP_S = ((0U << 23) + 19),
907 DOTP_U = ((1U << 23) + 19),
908 DPADD_S = ((2U << 23) + 19),
909 DPADD_U = ((3U << 23) + 19),
910 DPSUB_S = ((4U << 23) + 19),
911 DPSUB_U = ((5U << 23) + 19),
912 SLD = ((0U << 23) + 20),
913 SPLAT = ((1U << 23) + 20),
914 PCKEV = ((2U << 23) + 20),
915 PCKOD = ((3U << 23) + 20),
916 ILVL = ((4U << 23) + 20),
917 ILVR = ((5U << 23) + 20),
918 ILVEV = ((6U << 23) + 20),
919 ILVOD = ((7U << 23) + 20),
920 VSHF = ((0U << 23) + 21),
921 SRAR = ((1U << 23) + 21),
922 SRLR = ((2U << 23) + 21),
923 HADD_S = ((4U << 23) + 21),
924 HADD_U = ((5U << 23) + 21),
925 HSUB_S = ((6U << 23) + 21),
926 HSUB_U = ((7U << 23) + 21),
927 MSA_3R_DF_b = (0U << 21),
928 MSA_3R_DF_h = (1U << 21),
929 MSA_3R_DF_w = (2U << 21),
930 MSA_3R_DF_d = (3U << 21),
931
932 // MSA: Operation Field for 3RF Instruction Format
933 FCAF = ((0U << 22) + 26),
934 FCUN = ((1U << 22) + 26),
935 FCEQ = ((2U << 22) + 26),
936 FCUEQ = ((3U << 22) + 26),
937 FCLT = ((4U << 22) + 26),
938 FCULT = ((5U << 22) + 26),
939 FCLE = ((6U << 22) + 26),
940 FCULE = ((7U << 22) + 26),
941 FSAF = ((8U << 22) + 26),
942 FSUN = ((9U << 22) + 26),
943 FSEQ = ((10U << 22) + 26),
944 FSUEQ = ((11U << 22) + 26),
945 FSLT = ((12U << 22) + 26),
946 FSULT = ((13U << 22) + 26),
947 FSLE = ((14U << 22) + 26),
948 FSULE = ((15U << 22) + 26),
949 FADD = ((0U << 22) + 27),
950 FSUB = ((1U << 22) + 27),
951 FMUL = ((2U << 22) + 27),
952 FDIV = ((3U << 22) + 27),
953 FMADD = ((4U << 22) + 27),
954 FMSUB = ((5U << 22) + 27),
955 FEXP2 = ((7U << 22) + 27),
956 FEXDO = ((8U << 22) + 27),
957 FTQ = ((10U << 22) + 27),
958 FMIN = ((12U << 22) + 27),
959 FMIN_A = ((13U << 22) + 27),
960 FMAX = ((14U << 22) + 27),
961 FMAX_A = ((15U << 22) + 27),
962 FCOR = ((1U << 22) + 28),
963 FCUNE = ((2U << 22) + 28),
964 FCNE = ((3U << 22) + 28),
965 MUL_Q = ((4U << 22) + 28),
966 MADD_Q = ((5U << 22) + 28),
967 MSUB_Q = ((6U << 22) + 28),
968 FSOR = ((9U << 22) + 28),
969 FSUNE = ((10U << 22) + 28),
970 FSNE = ((11U << 22) + 28),
971 MULR_Q = ((12U << 22) + 28),
972 MADDR_Q = ((13U << 22) + 28),
973 MSUBR_Q = ((14U << 22) + 28),
974
975 // MSA: Operation Field for ELM Instruction Format
976 MSA_ELM_MINOR = ((3U << 3) + 1),
977 SLDI = (0U << 22),
978 CTCMSA = ((0U << 22) | (62U << 16)),
979 SPLATI = (1U << 22),
980 CFCMSA = ((1U << 22) | (62U << 16)),
981 COPY_S = (2U << 22),
982 MOVE_V = ((2U << 22) | (62U << 16)),
983 COPY_U = (3U << 22),
984 INSERT = (4U << 22),
985 INSVE = (5U << 22),
986 ELM_DF_B = ((0U << 4) << 16),
987 ELM_DF_H = ((4U << 3) << 16),
988 ELM_DF_W = ((12U << 2) << 16),
989 ELM_DF_D = ((28U << 1) << 16),
990
991 // MSA: Operation Field for BIT Instruction Format
992 SLLI = ((0U << 23) + 9),
993 SRAI = ((1U << 23) + 9),
994 SRLI = ((2U << 23) + 9),
995 BCLRI = ((3U << 23) + 9),
996 BSETI = ((4U << 23) + 9),
997 BNEGI = ((5U << 23) + 9),
998 BINSLI = ((6U << 23) + 9),
999 BINSRI = ((7U << 23) + 9),
1000 SAT_S = ((0U << 23) + 10),
1001 SAT_U = ((1U << 23) + 10),
1002 SRARI = ((2U << 23) + 10),
1003 SRLRI = ((3U << 23) + 10),
1004 BIT_DF_b = ((14U << 3) << 16),
1005 BIT_DF_h = ((6U << 4) << 16),
1006 BIT_DF_w = ((2U << 5) << 16),
1007 BIT_DF_d = ((0U << 6) << 16),
1008
1009 nullptrSF = 0U
1010 };
1011
1012 enum MSAMinorOpcode : uint32_t {
1013 kMsaMinorUndefined = 0,
1014 kMsaMinorI8,
1015 kMsaMinorI5,
1016 kMsaMinorI10,
1017 kMsaMinorBIT,
1018 kMsaMinor3R,
1019 kMsaMinor3RF,
1020 kMsaMinorELM,
1021 kMsaMinorVEC,
1022 kMsaMinor2R,
1023 kMsaMinor2RF,
1024 kMsaMinorMI10
1025 };
1026
1027 // ----- Emulated conditions.
1028 // On MIPS we use this enum to abstract from conditional branch instructions.
1029 // The 'U' prefix is used to specify unsigned comparisons.
1030 // Opposite conditions must be paired as odd/even numbers
1031 // because 'NegateCondition' function flips LSB to negate condition.
1032 enum Condition {
1033 // Any value < 0 is considered no_condition.
1034 kNoCondition = -1,
1035 overflow = 0,
1036 no_overflow = 1,
1037 Uless = 2,
1038 Ugreater_equal = 3,
1039 Uless_equal = 4,
1040 Ugreater = 5,
1041 equal = 6,
1042 not_equal = 7, // Unordered or Not Equal.
1043 negative = 8,
1044 positive = 9,
1045 parity_even = 10,
1046 parity_odd = 11,
1047 less = 12,
1048 greater_equal = 13,
1049 less_equal = 14,
1050 greater = 15,
1051 ueq = 16, // Unordered or Equal.
1052 ogl = 17, // Ordered and Not Equal.
1053 cc_always = 18,
1054
1055 // Aliases.
1056 carry = Uless,
1057 not_carry = Ugreater_equal,
1058 zero = equal,
1059 eq = equal,
1060 not_zero = not_equal,
1061 ne = not_equal,
1062 nz = not_equal,
1063 sign = negative,
1064 not_sign = positive,
1065 mi = negative,
1066 pl = positive,
1067 hi = Ugreater,
1068 ls = Uless_equal,
1069 ge = greater_equal,
1070 lt = less,
1071 gt = greater,
1072 le = less_equal,
1073 hs = Ugreater_equal,
1074 lo = Uless,
1075 al = cc_always,
1076 ult = Uless,
1077 uge = Ugreater_equal,
1078 ule = Uless_equal,
1079 ugt = Ugreater,
1080 cc_default = kNoCondition
1081 };
1082
1083
1084 // Returns the equivalent of !cc.
1085 // Negation of the default kNoCondition (-1) results in a non-default
1086 // no_condition value (-2). As long as tests for no_condition check
1087 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)1088 inline Condition NegateCondition(Condition cc) {
1089 DCHECK(cc != cc_always);
1090 return static_cast<Condition>(cc ^ 1);
1091 }
1092
1093
NegateFpuCondition(Condition cc)1094 inline Condition NegateFpuCondition(Condition cc) {
1095 DCHECK(cc != cc_always);
1096 switch (cc) {
1097 case ult:
1098 return ge;
1099 case ugt:
1100 return le;
1101 case uge:
1102 return lt;
1103 case ule:
1104 return gt;
1105 case lt:
1106 return uge;
1107 case gt:
1108 return ule;
1109 case ge:
1110 return ult;
1111 case le:
1112 return ugt;
1113 case eq:
1114 return ne;
1115 case ne:
1116 return eq;
1117 case ueq:
1118 return ogl;
1119 case ogl:
1120 return ueq;
1121 default:
1122 return cc;
1123 }
1124 }
1125
1126 enum MSABranchCondition {
1127 all_not_zero = 0, // Branch If All Elements Are Not Zero
1128 one_elem_not_zero, // Branch If At Least One Element of Any Format Is Not
1129 // Zero
1130 one_elem_zero, // Branch If At Least One Element Is Zero
1131 all_zero // Branch If All Elements of Any Format Are Zero
1132 };
1133
NegateMSABranchCondition(MSABranchCondition cond)1134 inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1135 switch (cond) {
1136 case all_not_zero:
1137 return one_elem_zero;
1138 case one_elem_not_zero:
1139 return all_zero;
1140 case one_elem_zero:
1141 return all_not_zero;
1142 case all_zero:
1143 return one_elem_not_zero;
1144 default:
1145 return cond;
1146 }
1147 }
1148
1149 enum MSABranchDF {
1150 MSA_BRANCH_B = 0,
1151 MSA_BRANCH_H,
1152 MSA_BRANCH_W,
1153 MSA_BRANCH_D,
1154 MSA_BRANCH_V
1155 };
1156
1157
1158 // ----- Coprocessor conditions.
1159 enum FPUCondition {
1160 kNoFPUCondition = -1,
1161
1162 F = 0x00, // False.
1163 UN = 0x01, // Unordered.
1164 EQ = 0x02, // Equal.
1165 UEQ = 0x03, // Unordered or Equal.
1166 OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
1167 LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
1168 ULT = 0x05, // Unordered or Less Than.
1169 OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
1170 LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
1171 ULE = 0x07, // Unordered or Less Than or Equal.
1172
1173 // Following constants are available on Mips release >= 6 only.
1174 ORD = 0x11, // Ordered, on Mips release >= 6.
1175 UNE = 0x12, // Not equal, on Mips release >= 6.
1176 NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
1177 };
1178
1179
1180 // FPU rounding modes.
1181 enum FPURoundingMode {
1182 RN = 0 << 0, // Round to Nearest.
1183 RZ = 1 << 0, // Round towards zero.
1184 RP = 2 << 0, // Round towards Plus Infinity.
1185 RM = 3 << 0, // Round towards Minus Infinity.
1186
1187 // Aliases.
1188 kRoundToNearest = RN,
1189 kRoundToZero = RZ,
1190 kRoundToPlusInf = RP,
1191 kRoundToMinusInf = RM,
1192
1193 mode_round = RN,
1194 mode_ceil = RP,
1195 mode_floor = RM,
1196 mode_trunc = RZ
1197 };
1198
1199 const uint32_t kFPURoundingModeMask = 3 << 0;
1200
1201 enum CheckForInexactConversion {
1202 kCheckForInexactConversion,
1203 kDontCheckForInexactConversion
1204 };
1205
1206 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1207
1208 // -----------------------------------------------------------------------------
1209 // Hints.
1210
1211 // Branch hints are not used on the MIPS. They are defined so that they can
1212 // appear in shared function signatures, but will be ignored in MIPS
1213 // implementations.
1214 enum Hint {
1215 no_hint = 0
1216 };
1217
1218
NegateHint(Hint hint)1219 inline Hint NegateHint(Hint hint) {
1220 return no_hint;
1221 }
1222
1223
1224 // -----------------------------------------------------------------------------
1225 // Specific instructions, constants, and masks.
1226 // These constants are declared in assembler-mips.cc, as they use named
1227 // registers and other constants.
1228
1229 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1230 // operations as post-increment of sp.
1231 extern const Instr kPopInstruction;
1232 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1233 extern const Instr kPushInstruction;
1234 // Sw(r, MemOperand(sp, 0))
1235 extern const Instr kPushRegPattern;
1236 // Lw(r, MemOperand(sp, 0))
1237 extern const Instr kPopRegPattern;
1238 extern const Instr kLwRegFpOffsetPattern;
1239 extern const Instr kSwRegFpOffsetPattern;
1240 extern const Instr kLwRegFpNegOffsetPattern;
1241 extern const Instr kSwRegFpNegOffsetPattern;
1242 // A mask for the Rt register for push, pop, lw, sw instructions.
1243 extern const Instr kRtMask;
1244 extern const Instr kLwSwInstrTypeMask;
1245 extern const Instr kLwSwInstrArgumentMask;
1246 extern const Instr kLwSwOffsetMask;
1247
1248 // Break 0xfffff, reserved for redirected real time call.
1249 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1250 // A nop instruction. (Encoding of sll 0 0 0).
1251 const Instr nopInstr = 0;
1252
OpcodeToBitNumber(Opcode opcode)1253 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1254 return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1255 }
1256
1257 constexpr uint8_t kInstrSize = 4;
1258 constexpr uint8_t kInstrSizeLog2 = 2;
1259
1260 class InstructionBase {
1261 public:
1262 enum {
1263 // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1264 // always the value of the current instruction being executed.
1265 kPCReadOffset = 0
1266 };
1267
1268 // Instruction type.
1269 enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1270
1271 // Get the raw instruction bits.
InstructionBits()1272 inline Instr InstructionBits() const {
1273 return *reinterpret_cast<const Instr*>(this);
1274 }
1275
1276 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)1277 inline void SetInstructionBits(Instr value) {
1278 *reinterpret_cast<Instr*>(this) = value;
1279 }
1280
1281 // Read one particular bit out of the instruction bits.
Bit(int nr)1282 inline int Bit(int nr) const {
1283 return (InstructionBits() >> nr) & 1;
1284 }
1285
1286 // Read a bit field out of the instruction bits.
Bits(int hi,int lo)1287 inline int Bits(int hi, int lo) const {
1288 return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1289 }
1290
1291 static constexpr uint64_t kOpcodeImmediateTypeMask =
1292 OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1293 OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1294 OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1295 OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1296 OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
1297 OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
1298 OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
1299 OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
1300 OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
1301 OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
1302 OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
1303 OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
1304 OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1305 OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
1306 OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1307 OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
1308 OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
1309 OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1310 OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1311 OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
1312 OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
1313
1314 #define FunctionFieldToBitNumber(function) (1ULL << function)
1315
1316 // On r6, DCLZ_R6 aliases to existing MFLO.
1317 static const uint64_t kFunctionFieldRegisterTypeMask =
1318 FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1319 FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1320 FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
1321 FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
1322 FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
1323 FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
1324 FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
1325 FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
1326 FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
1327 FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
1328 FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1329 FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
1330 FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
1331 FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
1332 FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
1333 FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
1334 FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
1335 FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
1336 FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
1337 FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1338 FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1339 FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1340 FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1341 FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1342 FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1343 FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1344 FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1345 FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1346
1347
1348 // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()1349 inline Opcode OpcodeValue() const {
1350 return static_cast<Opcode>(
1351 Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1352 }
1353
FunctionFieldRaw()1354 inline int FunctionFieldRaw() const {
1355 return InstructionBits() & kFunctionFieldMask;
1356 }
1357
1358 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1359 inline Opcode OpcodeFieldRaw() const {
1360 return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1361 }
1362
1363 // Safe to call within InstructionType().
RsFieldRawNoAssert()1364 inline int RsFieldRawNoAssert() const {
1365 return InstructionBits() & kRsFieldMask;
1366 }
1367
SaFieldRaw()1368 inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1369
1370 // Get the encoding type of the instruction.
1371 inline Type InstructionType() const;
1372
MSAMinorOpcodeField()1373 inline MSAMinorOpcode MSAMinorOpcodeField() const {
1374 int op = this->FunctionFieldRaw();
1375 switch (op) {
1376 case 0:
1377 case 1:
1378 case 2:
1379 return kMsaMinorI8;
1380 case 6:
1381 return kMsaMinorI5;
1382 case 7:
1383 return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1384 ? kMsaMinorI10
1385 : kMsaMinorI5);
1386 case 9:
1387 case 10:
1388 return kMsaMinorBIT;
1389 case 13:
1390 case 14:
1391 case 15:
1392 case 16:
1393 case 17:
1394 case 18:
1395 case 19:
1396 case 20:
1397 case 21:
1398 return kMsaMinor3R;
1399 case 25:
1400 return kMsaMinorELM;
1401 case 26:
1402 case 27:
1403 case 28:
1404 return kMsaMinor3RF;
1405 case 30:
1406 switch (this->RsFieldRawNoAssert()) {
1407 case MSA_2R_FORMAT:
1408 return kMsaMinor2R;
1409 case MSA_2RF_FORMAT:
1410 return kMsaMinor2RF;
1411 default:
1412 return kMsaMinorVEC;
1413 }
1414 break;
1415 case 32:
1416 case 33:
1417 case 34:
1418 case 35:
1419 case 36:
1420 case 37:
1421 case 38:
1422 case 39:
1423 return kMsaMinorMI10;
1424 default:
1425 return kMsaMinorUndefined;
1426 }
1427 }
1428
1429 protected:
InstructionBase()1430 InstructionBase() {}
1431 };
1432
1433 template <class T>
1434 class InstructionGetters : public T {
1435 public:
RsValue()1436 inline int RsValue() const {
1437 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1438 this->InstructionType() == InstructionBase::kImmediateType);
1439 return this->Bits(kRsShift + kRsBits - 1, kRsShift);
1440 }
1441
RtValue()1442 inline int RtValue() const {
1443 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1444 this->InstructionType() == InstructionBase::kImmediateType);
1445 return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1446 }
1447
RdValue()1448 inline int RdValue() const {
1449 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1450 return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1451 }
1452
BaseValue()1453 inline int BaseValue() const {
1454 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1455 return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1456 }
1457
SaValue()1458 inline int SaValue() const {
1459 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1460 return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1461 }
1462
LsaSaValue()1463 inline int LsaSaValue() const {
1464 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1465 return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1466 }
1467
FunctionValue()1468 inline int FunctionValue() const {
1469 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1470 this->InstructionType() == InstructionBase::kImmediateType);
1471 return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1472 }
1473
FdValue()1474 inline int FdValue() const {
1475 return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1476 }
1477
FsValue()1478 inline int FsValue() const {
1479 return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1480 }
1481
FtValue()1482 inline int FtValue() const {
1483 return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1484 }
1485
FrValue()1486 inline int FrValue() const {
1487 return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1488 }
1489
WdValue()1490 inline int WdValue() const {
1491 return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1492 }
1493
WsValue()1494 inline int WsValue() const {
1495 return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1496 }
1497
WtValue()1498 inline int WtValue() const {
1499 return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1500 }
1501
Bp2Value()1502 inline int Bp2Value() const {
1503 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1504 return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1505 }
1506
Bp3Value()1507 inline int Bp3Value() const {
1508 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1509 return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1510 }
1511
1512 // Float Compare condition code instruction bits.
FCccValue()1513 inline int FCccValue() const {
1514 return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1515 }
1516
1517 // Float Branch condition code instruction bits.
FBccValue()1518 inline int FBccValue() const {
1519 return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1520 }
1521
1522 // Float Branch true/false instruction bit.
FBtrueValue()1523 inline int FBtrueValue() const {
1524 return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1525 }
1526
1527 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1528 inline Opcode OpcodeFieldRaw() const {
1529 return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1530 }
1531
RsFieldRaw()1532 inline int RsFieldRaw() const {
1533 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1534 this->InstructionType() == InstructionBase::kImmediateType);
1535 return this->InstructionBits() & kRsFieldMask;
1536 }
1537
1538 // Same as above function, but safe to call within InstructionType().
RsFieldRawNoAssert()1539 inline int RsFieldRawNoAssert() const {
1540 return this->InstructionBits() & kRsFieldMask;
1541 }
1542
RtFieldRaw()1543 inline int RtFieldRaw() const {
1544 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1545 this->InstructionType() == InstructionBase::kImmediateType);
1546 return this->InstructionBits() & kRtFieldMask;
1547 }
1548
RdFieldRaw()1549 inline int RdFieldRaw() const {
1550 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1551 return this->InstructionBits() & kRdFieldMask;
1552 }
1553
SaFieldRaw()1554 inline int SaFieldRaw() const {
1555 return this->InstructionBits() & kSaFieldMask;
1556 }
1557
FunctionFieldRaw()1558 inline int FunctionFieldRaw() const {
1559 return this->InstructionBits() & kFunctionFieldMask;
1560 }
1561
1562 // Get the secondary field according to the opcode.
SecondaryValue()1563 inline int SecondaryValue() const {
1564 Opcode op = this->OpcodeFieldRaw();
1565 switch (op) {
1566 case SPECIAL:
1567 case SPECIAL2:
1568 return FunctionValue();
1569 case COP1:
1570 return RsValue();
1571 case REGIMM:
1572 return RtValue();
1573 default:
1574 return nullptrSF;
1575 }
1576 }
1577
ImmValue(int bits)1578 inline int32_t ImmValue(int bits) const {
1579 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1580 return this->Bits(bits - 1, 0);
1581 }
1582
Imm9Value()1583 inline int32_t Imm9Value() const {
1584 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1585 return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1586 }
1587
Imm16Value()1588 inline int32_t Imm16Value() const {
1589 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1590 return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1591 }
1592
Imm18Value()1593 inline int32_t Imm18Value() const {
1594 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1595 return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1596 }
1597
Imm19Value()1598 inline int32_t Imm19Value() const {
1599 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1600 return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1601 }
1602
Imm21Value()1603 inline int32_t Imm21Value() const {
1604 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1605 return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1606 }
1607
Imm26Value()1608 inline int32_t Imm26Value() const {
1609 DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1610 (this->InstructionType() == InstructionBase::kImmediateType));
1611 return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1612 }
1613
MsaImm8Value()1614 inline int32_t MsaImm8Value() const {
1615 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1616 return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1617 }
1618
MsaImm5Value()1619 inline int32_t MsaImm5Value() const {
1620 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1621 return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1622 }
1623
MsaImm10Value()1624 inline int32_t MsaImm10Value() const {
1625 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1626 return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1627 }
1628
MsaImmMI10Value()1629 inline int32_t MsaImmMI10Value() const {
1630 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1631 return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1632 }
1633
MsaBitDf()1634 inline int32_t MsaBitDf() const {
1635 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1636 int32_t df_m = this->Bits(22, 16);
1637 if (((df_m >> 6) & 1U) == 0) {
1638 return 3;
1639 } else if (((df_m >> 5) & 3U) == 2) {
1640 return 2;
1641 } else if (((df_m >> 4) & 7U) == 6) {
1642 return 1;
1643 } else if (((df_m >> 3) & 15U) == 14) {
1644 return 0;
1645 } else {
1646 return -1;
1647 }
1648 }
1649
MsaBitMValue()1650 inline int32_t MsaBitMValue() const {
1651 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1652 return this->Bits(16 + this->MsaBitDf() + 3, 16);
1653 }
1654
MsaElmDf()1655 inline int32_t MsaElmDf() const {
1656 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1657 this->InstructionType() == InstructionBase::kImmediateType);
1658 int32_t df_n = this->Bits(21, 16);
1659 if (((df_n >> 4) & 3U) == 0) {
1660 return 0;
1661 } else if (((df_n >> 3) & 7U) == 4) {
1662 return 1;
1663 } else if (((df_n >> 2) & 15U) == 12) {
1664 return 2;
1665 } else if (((df_n >> 1) & 31U) == 28) {
1666 return 3;
1667 } else {
1668 return -1;
1669 }
1670 }
1671
MsaElmNValue()1672 inline int32_t MsaElmNValue() const {
1673 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1674 this->InstructionType() == InstructionBase::kImmediateType);
1675 return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1676 }
1677
1678 static bool IsForbiddenAfterBranchInstr(Instr instr);
1679
1680 // Say if the instruction should not be used in a branch delay slot or
1681 // immediately after a compact branch.
IsForbiddenAfterBranch()1682 inline bool IsForbiddenAfterBranch() const {
1683 return IsForbiddenAfterBranchInstr(this->InstructionBits());
1684 }
1685
IsForbiddenInBranchDelay()1686 inline bool IsForbiddenInBranchDelay() const {
1687 return IsForbiddenAfterBranch();
1688 }
1689
1690 // Say if the instruction 'links'. e.g. jal, bal.
1691 bool IsLinkingInstruction() const;
1692 // Say if the instruction is a break or a trap.
1693 bool IsTrap() const;
1694
IsMSABranchInstr()1695 inline bool IsMSABranchInstr() const {
1696 if (this->OpcodeFieldRaw() == COP1) {
1697 switch (this->RsFieldRaw()) {
1698 case BZ_V:
1699 case BZ_B:
1700 case BZ_H:
1701 case BZ_W:
1702 case BZ_D:
1703 case BNZ_V:
1704 case BNZ_B:
1705 case BNZ_H:
1706 case BNZ_W:
1707 case BNZ_D:
1708 return true;
1709 default:
1710 return false;
1711 }
1712 }
1713 return false;
1714 }
1715
IsMSAInstr()1716 inline bool IsMSAInstr() const {
1717 if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1718 return true;
1719 return false;
1720 }
1721 };
1722
1723 class Instruction : public InstructionGetters<InstructionBase> {
1724 public:
1725 // Instructions are read of out a code stream. The only way to get a
1726 // reference to an instruction is to convert a pointer. There is no way
1727 // to allocate or create instances of class Instruction.
1728 // Use the At(pc) function to create references to Instruction.
At(byte * pc)1729 static Instruction* At(byte* pc) {
1730 return reinterpret_cast<Instruction*>(pc);
1731 }
1732
1733 private:
1734 // We need to prevent the creation of instances of class Instruction.
1735 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1736 };
1737
1738
1739 // -----------------------------------------------------------------------------
1740 // MIPS assembly various constants.
1741
1742 // C/C++ argument slots size.
1743 const int kCArgSlotCount = 0;
1744
1745 // TODO(plind): below should be based on kPointerSize
1746 // TODO(plind): find all usages and remove the needless instructions for n64.
1747 const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2;
1748
1749 const int kInvalidStackOffset = -1;
1750 const int kBranchReturnOffset = 2 * kInstrSize;
1751
1752 static const int kNegOffset = 0x00008000;
1753
InstructionType()1754 InstructionBase::Type InstructionBase::InstructionType() const {
1755 switch (OpcodeFieldRaw()) {
1756 case SPECIAL:
1757 if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1758 kFunctionFieldRegisterTypeMask) {
1759 return kRegisterType;
1760 }
1761 return kUnsupported;
1762 case SPECIAL2:
1763 switch (FunctionFieldRaw()) {
1764 case MUL:
1765 case CLZ:
1766 case DCLZ:
1767 return kRegisterType;
1768 default:
1769 return kUnsupported;
1770 }
1771 break;
1772 case SPECIAL3:
1773 switch (FunctionFieldRaw()) {
1774 case INS:
1775 case DINS:
1776 case DINSM:
1777 case DINSU:
1778 case EXT:
1779 case DEXT:
1780 case DEXTM:
1781 case DEXTU:
1782 return kRegisterType;
1783 case BSHFL: {
1784 int sa = SaFieldRaw() >> kSaShift;
1785 switch (sa) {
1786 case BITSWAP:
1787 case WSBH:
1788 case SEB:
1789 case SEH:
1790 return kRegisterType;
1791 }
1792 sa >>= kBp2Bits;
1793 switch (sa) {
1794 case ALIGN:
1795 return kRegisterType;
1796 default:
1797 return kUnsupported;
1798 }
1799 }
1800 case LL_R6:
1801 case LLD_R6:
1802 case SC_R6:
1803 case SCD_R6: {
1804 DCHECK_EQ(kArchVariant, kMips64r6);
1805 return kImmediateType;
1806 }
1807 case DBSHFL: {
1808 int sa = SaFieldRaw() >> kSaShift;
1809 switch (sa) {
1810 case DBITSWAP:
1811 case DSBH:
1812 case DSHD:
1813 return kRegisterType;
1814 }
1815 sa = SaFieldRaw() >> kSaShift;
1816 sa >>= kBp3Bits;
1817 switch (sa) {
1818 case DALIGN:
1819 return kRegisterType;
1820 default:
1821 return kUnsupported;
1822 }
1823 }
1824 default:
1825 return kUnsupported;
1826 }
1827 break;
1828 case COP1: // Coprocessor instructions.
1829 switch (RsFieldRawNoAssert()) {
1830 case BC1: // Branch on coprocessor condition.
1831 case BC1EQZ:
1832 case BC1NEZ:
1833 return kImmediateType;
1834 // MSA Branch instructions
1835 case BZ_V:
1836 case BNZ_V:
1837 case BZ_B:
1838 case BZ_H:
1839 case BZ_W:
1840 case BZ_D:
1841 case BNZ_B:
1842 case BNZ_H:
1843 case BNZ_W:
1844 case BNZ_D:
1845 return kImmediateType;
1846 default:
1847 return kRegisterType;
1848 }
1849 break;
1850 case COP1X:
1851 return kRegisterType;
1852
1853 // 26 bits immediate type instructions. e.g.: j imm26.
1854 case J:
1855 case JAL:
1856 return kJumpType;
1857
1858 case MSA:
1859 switch (MSAMinorOpcodeField()) {
1860 case kMsaMinor3R:
1861 case kMsaMinor3RF:
1862 case kMsaMinorVEC:
1863 case kMsaMinor2R:
1864 case kMsaMinor2RF:
1865 return kRegisterType;
1866 case kMsaMinorELM:
1867 switch (InstructionBits() & kMsaLongerELMMask) {
1868 case CFCMSA:
1869 case CTCMSA:
1870 case MOVE_V:
1871 return kRegisterType;
1872 default:
1873 return kImmediateType;
1874 }
1875 default:
1876 return kImmediateType;
1877 }
1878
1879 default:
1880 return kImmediateType;
1881 }
1882 return kUnsupported;
1883 }
1884 #undef OpcodeToBitNumber
1885 #undef FunctionFieldToBitNumber
1886
1887 // -----------------------------------------------------------------------------
1888 // Instructions.
1889
1890 template <class P>
IsLinkingInstruction()1891 bool InstructionGetters<P>::IsLinkingInstruction() const {
1892 switch (OpcodeFieldRaw()) {
1893 case JAL:
1894 return true;
1895 case POP76:
1896 if (RsFieldRawNoAssert() == JIALC)
1897 return true; // JIALC
1898 else
1899 return false; // BNEZC
1900 case REGIMM:
1901 switch (RtFieldRaw()) {
1902 case BGEZAL:
1903 case BLTZAL:
1904 return true;
1905 default:
1906 return false;
1907 }
1908 case SPECIAL:
1909 switch (FunctionFieldRaw()) {
1910 case JALR:
1911 return true;
1912 default:
1913 return false;
1914 }
1915 default:
1916 return false;
1917 }
1918 }
1919
1920 template <class P>
IsTrap()1921 bool InstructionGetters<P>::IsTrap() const {
1922 if (OpcodeFieldRaw() != SPECIAL) {
1923 return false;
1924 } else {
1925 switch (FunctionFieldRaw()) {
1926 case BREAK:
1927 case TGE:
1928 case TGEU:
1929 case TLT:
1930 case TLTU:
1931 case TEQ:
1932 case TNE:
1933 return true;
1934 default:
1935 return false;
1936 }
1937 }
1938 }
1939
1940 // static
1941 template <class T>
IsForbiddenAfterBranchInstr(Instr instr)1942 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1943 Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1944 switch (opcode) {
1945 case J:
1946 case JAL:
1947 case BEQ:
1948 case BNE:
1949 case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
1950 case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1951 case BEQL:
1952 case BNEL:
1953 case BLEZL: // POP26 bgezc, blezc, bgec/blec
1954 case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
1955 case BC:
1956 case BALC:
1957 case POP10: // beqzalc, bovc, beqc
1958 case POP30: // bnezalc, bnvc, bnec
1959 case POP66: // beqzc, jic
1960 case POP76: // bnezc, jialc
1961 return true;
1962 case REGIMM:
1963 switch (instr & kRtFieldMask) {
1964 case BLTZ:
1965 case BGEZ:
1966 case BLTZAL:
1967 case BGEZAL:
1968 return true;
1969 default:
1970 return false;
1971 }
1972 break;
1973 case SPECIAL:
1974 switch (instr & kFunctionFieldMask) {
1975 case JR:
1976 case JALR:
1977 return true;
1978 default:
1979 return false;
1980 }
1981 break;
1982 case COP1:
1983 switch (instr & kRsFieldMask) {
1984 case BC1:
1985 case BC1EQZ:
1986 case BC1NEZ:
1987 case BZ_V:
1988 case BZ_B:
1989 case BZ_H:
1990 case BZ_W:
1991 case BZ_D:
1992 case BNZ_V:
1993 case BNZ_B:
1994 case BNZ_H:
1995 case BNZ_W:
1996 case BNZ_D:
1997 return true;
1998 break;
1999 default:
2000 return false;
2001 }
2002 break;
2003 default:
2004 return false;
2005 }
2006 }
2007 } // namespace internal
2008 } // namespace v8
2009
2010 #endif // V8_MIPS64_CONSTANTS_MIPS64_H_
2011