/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | vgg.py | 47 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 66 [layers.conv2d, layers_lib.fully_connected], 102 [layers.conv2d, layers_lib.max_pool2d], 104 net = layers_lib.repeat( 106 net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') 107 net = layers_lib.repeat(net, 1, layers.conv2d, 128, [3, 3], scope='conv2') 108 net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') 109 net = layers_lib.repeat(net, 2, layers.conv2d, 256, [3, 3], scope='conv3') 110 net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') 111 net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv4') [all …]
|
D | inception_v1.py | 24 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 62 [layers.conv2d, layers_lib.fully_connected], 65 [layers.conv2d, layers_lib.max_pool2d], stride=1, padding='SAME'): 72 net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) 87 net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) 105 branch_3 = layers_lib.max_pool2d( 127 branch_3 = layers_lib.max_pool2d( 137 net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) 155 branch_3 = layers_lib.max_pool2d( 177 branch_3 = layers_lib.max_pool2d( [all …]
|
D | overfeat.py | 37 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 50 [layers.conv2d, layers_lib.fully_connected], 55 with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: 96 [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], 100 net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') 102 net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') 106 net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') 113 net = layers_lib.dropout( 116 net = layers_lib.dropout(
|
D | alexnet.py | 41 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 54 [layers.conv2d, layers_lib.fully_connected], 59 with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: 99 [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], 103 net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool1') 105 net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool2') 109 net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool5') 117 net = layers_lib.dropout( 120 net = layers_lib.dropout(
|
D | inception_v3.py | 24 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 107 [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d], 131 net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) 149 net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point) 157 [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d], 179 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 206 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 233 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 263 branch_2 = layers_lib.max_pool2d( 295 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') [all …]
|
D | inception_v2.py | 24 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 84 layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d, 115 net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2) 137 net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2) 167 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 202 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 234 branch_2 = layers_lib.max_pool2d( 265 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 300 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') 335 branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') [all …]
|
D | resnet_v2.py | 55 from tensorflow.contrib import layers as layers_lib unknown 105 shortcut = layers_lib.conv2d( 113 residual = layers_lib.conv2d( 117 residual = layers_lib.conv2d( 200 [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense], 213 [layers_lib.conv2d], activation_fn=None, normalizer_fn=None): 226 net = layers_lib.conv2d(
|
D | resnet_utils.py | 43 from tensorflow.contrib import layers as layers_lib unknown 124 return layers_lib.conv2d( 139 return layers_lib.conv2d( 256 [layers_lib.conv2d],
|
D | resnet_v1.py | 64 from tensorflow.contrib.layers.python.layers import layers as layers_lib unknown 206 net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope='pool1') 221 end_points['predictions'] = layers_lib.softmax(
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | layers_test.py | 25 from tensorflow.contrib import layers as layers_lib unknown 318 layers_lib.convolution3d(images_2d, 32, 3) 322 layers_lib.convolution2d(images_3d, 32, 3) 329 layers_lib.convolution2d(images, 32, 3, data_format='CHWN') 335 output = layers_lib.convolution2d(images, 32, [3, 3]) 347 output = layers_lib.convolution2d(images, 32, [3, 3], data_format='NCHW') 359 output = layers_lib.convolution2d(images, 32, 3) 367 output = layers_lib.convolution2d(images, 32, images.get_shape()[1:3]) 375 output = layers_lib.convolution2d( 393 layers_lib.convolution2d(images, 64, images.get_shape()[1:3]) [all …]
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/kernel_tests/ |
D | monte_carlo_test.py | 23 from tensorflow.contrib import layers as layers_lib unknown 37 layers = layers_lib
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head.py | 31 from tensorflow.contrib import layers as layers_lib unknown 617 return layers_lib.linear(logits_input, logits_dimension, scope="logits")
|