/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | geometric_test.py | 67 log_prob = geom.log_prob(x) 68 self.assertEqual([6,], log_prob.get_shape()) 69 self.assertAllClose(expected_log_prob, log_prob.eval()) 84 log_prob = geom.log_prob(x) 85 log_prob.eval(feed_dict=feed_dict) 88 log_prob = geom.log_prob(np.array([-1.], dtype=np.float32)) 89 log_prob.eval() 92 log_prob = geom.log_prob(x) 93 self.assertEqual([6,], log_prob.get_shape()) 105 log_prob = geom.log_prob(x) [all …]
|
D | wishart_test.py | 212 self.assertAllClose(log_prob_df_seq, w.log_prob(chol_x).eval()) 217 log_prob = np.array([ 239 self.assertAllClose(log_prob[0], w.log_prob(x[0]).eval()) 240 self.assertAllClose(log_prob[0:2], w.log_prob(x[0:2]).eval()) 242 np.reshape(log_prob, (2, 2)), 243 w.log_prob(np.reshape(x, (2, 2, 2, 2))).eval()) 245 np.reshape(np.exp(log_prob), (2, 2)), 248 w.log_prob(np.reshape(x, (2, 2, 2, 2))).get_shape()) 261 self.assertAllClose(log_prob[0], w.log_prob(chol_x[0]).eval()) 262 self.assertAllClose(log_prob[0:2], w.log_prob(chol_x[0:2]).eval()) [all …]
|
D | mvn_diag_plus_low_rank_test.py | 185 dist.log_prob(samps) - mvn_identity.log_prob(samps), 0) 189 dist.log_prob(samps) - mvn_scaled.log_prob(samps), 0) 193 dist.log_prob(samps) - mvn_diag.log_prob(samps), 0) 197 dist.log_prob(samps) - mvn_chol.log_prob(samps), 0) 208 baseline.log_prob(samps) - mvn_identity.log_prob(samps), 0) 213 baseline.log_prob(samps) - mvn_scaled.log_prob(samps), 0) 218 baseline.log_prob(samps) - mvn_diag.log_prob(samps), 0) 222 baseline.log_prob(samps) - mvn_chol.log_prob(samps), 0)
|
D | vector_student_t_test.py | 50 def log_prob(self, x): member in _FakeVectorStudentT 69 return np.exp(self.log_prob(x)) 93 self.assertAllClose(expected_mst.log_prob(x), 94 actual_mst.log_prob(x).eval(), 122 self.assertAllClose(expected_mst.log_prob(x), 123 actual_mst.log_prob(x).eval(), 155 self.assertAllClose(expected_mst.log_prob(x), 156 actual_mst.log_prob(x).eval(feed_dict=feed_dict), 186 self.assertAllClose(expected_mst.log_prob(x), 187 actual_mst.log_prob(x).eval(), [all …]
|
D | mixture_same_family_test.py | 44 log_prob_x = gm.log_prob(x) 55 log_prob_x = gm.log_prob(x) 67 log_prob_x = bm.log_prob(x) 81 log_prob_x = gm.log_prob(x) 96 log_prob_x = gm.log_prob(x)
|
D | transformed_distribution_test.py | 102 for func in [[log_normal.log_prob, sp_dist.logpdf], 147 abs_normal.log_prob(2.13).eval()) 180 sample_val, log_pdf_val = sess.run([sample, log_normal.log_prob(sample)]) 208 sample_val, log_pdf_val = sess.run([sample, exp_normal.log_prob(sample)]) 228 multi_logit_normal.log_prob(y).eval()) 255 normal.log_prob(y).eval() 285 log_prob = exp2.log_prob(1.) 286 log_prob_ = sess.run(log_prob) 396 fake_mvn.log_prob(x), 534 fake_mvn.log_prob(x),
|
D | negative_binomial_test.py | 131 log_pmf = negbinom.log_prob(x) 150 log_pmf = negbinom.log_prob(x) 154 log_pmf = negbinom.log_prob([-1.]) 159 log_pmf = negbinom.log_prob(x) 175 log_pmf = negbinom.log_prob(x) 251 log_prob_ = sess.run(nb.log_prob(x)) 262 log_prob_ = sess.run(nb.log_prob(x))
|
D | batch_reshape_test.py | 76 wishart.log_prob(x), expected_log_prob_shape) 77 actual_log_prob = reshape_wishart.log_prob(expected_sample) 202 normal.log_prob(x), expected_log_prob_shape) 203 actual_log_prob = reshape_normal.log_prob(expected_sample) 323 mvn.log_prob(x), expected_log_prob_shape) 324 actual_log_prob = reshape_mvn.log_prob(expected_sample) 544 poisson_141_reshaped.log_prob(x_4) 547 poisson_141_reshaped.log_prob(x_114) 552 poisson_141_reshaped.log_prob(x_4).eval() 556 poisson_141_reshaped.log_prob(x_114).eval()
|
D | normal_conjugate_posteriors_test.py | 50 posterior_log_pdf = posterior.log_prob(x).eval() 71 posterior_log_pdf = posterior.log_prob(x).eval() 96 posterior_log_pdf = posterior.log_prob(x) 115 predictive_log_pdf = predictive.log_prob(x).eval()
|
D | logistic_test.py | 51 log_prob = dist.log_prob(x) 52 self.assertEqual(log_prob.get_shape(), (6,)) 53 self.assertAllClose(log_prob.eval(), expected_log_prob) 168 self.assertEqual(dist.loc.dtype, dist.log_prob(0.2).dtype)
|
D | relaxed_bernoulli_test.py | 111 self.assertEqual(dist.probs.dtype, dist.log_prob([0.0]).dtype) 130 log_pdf = dist.log_prob(xs).eval() 137 self.assertAllClose(np.nan, dist.log_prob(0.0).eval()) 138 self.assertAllClose([np.nan], [dist.log_prob(1.0).eval()])
|
D | poisson_test.py | 62 log_pmf = poisson.log_prob(x) 80 log_pmf = poisson.log_prob(x) 84 log_pmf = poisson.log_prob([-1.]) 88 log_pmf = poisson.log_prob(x) 101 log_pmf = poisson.log_prob(x)
|
D | sinh_arcsinh_test.py | 122 norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)]) 164 norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)])
|
D | vector_sinh_arcsinh_diag_test.py | 114 norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)]) 159 norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)])
|
D | quantized_distribution_test.py | 311 np.log(sm_normal.cdf(-2)), qdist.log_prob(-2.).eval(), atol=0) 315 qdist.log_prob(-1.).eval(), 320 qdist.log_prob(0.).eval(), 324 np.log(1. - sm_normal.cdf(1)), qdist.log_prob(2.).eval(), atol=0) 336 proba = qdist.log_prob(x)
|
D | independent_test.py | 61 log_prob_x = ind.log_prob(x) 84 log_prob_x = ind.log_prob(x) 113 sample_entropy = -math_ops.reduce_mean(ind.log_prob(x), axis=0) 240 log_prob_x = ind.log_prob(x)
|
D | mvn_tril_test.py | 55 log_pdf = mvn.log_prob(x) 75 log_pdf = mvn.log_prob(x) 96 log_pdf = mvn.log_prob(x) 181 log_prob_val = mvn.log_prob(samples_val).eval() 358 dist.log_prob(samps) - mvn_chol.log_prob(samps), 0)
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | categorical_test.py | 107 dist.logits.dtype, dist.log_prob(np.array( 291 "cat_log_prob": cat.log_prob(disc_event_tf), 295 "norm_log_prob": norm.log_prob(real_event_tf), 317 self.assertAllClose(dist.log_prob([0, 1]).eval(), np.log([0.2, 0.4])) 318 self.assertAllClose(dist.log_prob([0.0, 1.0]).eval(), np.log([0.2, 0.4])) 438 log_prob = dist.log_prob([0, 1]) 439 self.assertEqual(2, log_prob.get_shape().ndims) 440 self.assertAllEqual([1, 2], log_prob.get_shape()) 442 log_prob = dist.log_prob([[[1, 1], [1, 0]], [[1, 0], [0, 1]]]) 443 self.assertEqual(3, log_prob.get_shape().ndims) [all …]
|
D | bernoulli_test.py | 122 self.assertEqual(dist.probs.dtype, dist.log_prob(0).dtype) 123 self.assertEqual(dist.probs.dtype, dist.log_prob(0.5).dtype) 152 self.assertAllClose(self.evaluate(dist.log_prob(x)), np.log(expected_pmf)) 196 bernoulli.Bernoulli(probs=p, validate_args=False).log_prob(samps))) 203 self.assertAllClose(np.log(0.5), dist.log_prob(1).eval({p: 0.5})) 205 np.log([0.5, 0.5, 0.5]), dist.log_prob([1, 1, 1]).eval({ 209 np.log([0.5, 0.5, 0.5]), dist.log_prob(1).eval({ 218 self.assertEqual(2, len(dist.log_prob(1).eval({p: [[0.5], [0.5]]}).shape)) 221 self.assertEqual(2, len(self.evaluate(dist.log_prob([[1], [1]])).shape)) 224 self.assertEqual((), dist.log_prob(1).get_shape()) [all …]
|
D | dirichlet_test.py | 93 log_prob = self.evaluate(dist.log_prob(x)) 95 np.ones_like(log_prob, dtype=np.bool), np.isfinite(log_prob)) 99 log_prob = self.evaluate(dist.log_prob(x)) 101 np.ones_like(log_prob, dtype=np.bool), np.isfinite(log_prob)) 282 kl_sample = math_ops.reduce_mean(d1.log_prob(x) - d2.log_prob(x), 0)
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/kernel_tests/ |
D | monte_carlo_test.py | 55 f=lambda x: x, log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) 59 f=math_ops.square, log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) 88 f=indicator, log_p=p.log_prob, sampling_dist_q=q, n=n, seed=42) 114 log_p=p.log_prob, 177 efx_reparam = mc.expectation(f, samples, p.log_prob) 178 efx_score = mc.expectation(f, samples, p.log_prob, 224 f=lambda x: p.log_prob(x) - q.log_prob(x), 226 log_prob=p.log_prob,
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/ops/ |
D | monte_carlo_impl.py | 87 q_log_prob_z = q.log_prob(z) 160 log_values = log_f(z) + log_p(z) - q.log_prob(z) 198 def expectation(f, samples, log_prob=None, use_reparametrization=True, argument 333 if not callable(log_prob): 337 logpx = log_prob(x)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | ctc_decoder_ops.cc | 59 Tensor** log_prob, OpOutputList* decoded_indices, in ValidateInputsGenerateOutputs() argument 99 "log_probability", TensorShape({batch_size, top_paths_}), log_prob); in ValidateInputsGenerateOutputs() 182 Tensor* log_prob = nullptr; in Compute() local 187 ctx, &inputs, &seq_len, &log_prob, &decoded_indices, in Compute() 208 auto log_prob_t = log_prob->matrix<float>(); in Compute() 270 Tensor* log_prob = nullptr; in Compute() local 275 ctx, &inputs, &seq_len, &log_prob, &decoded_indices, in Compute() 280 auto log_prob_t = log_prob->matrix<float>(); in Compute()
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | conditional_transformed_distribution.py | 123 log_prob = self.distribution.log_prob(x, **distribution_kwargs) 125 log_prob = math_ops.reduce_sum(log_prob, self._reduce_event_indices) 126 return math_ops.cast(ildj, log_prob.dtype) + log_prob
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | transformed_distribution.py | 442 log_prob = self.distribution.log_prob(x) 444 log_prob = math_ops.reduce_sum(log_prob, self._reduce_event_indices) 445 log_prob += math_ops.cast(ildj, log_prob.dtype) 447 log_prob.set_shape( 451 return log_prob
|