/external/tensorflow/tensorflow/contrib/gan/python/losses/python/ |
D | tuple_losses_impl.py | 89 def _args_to_gan_model(loss_fn): argument 104 argspec = tf_inspect.getargspec(loss_fn) 134 arg, loss_fn.__name__)) 141 'for %s: %s' % (loss_fn.__name__, ambiguous_args)) 158 return loss_fn(**kwargs) 160 new_docstring = """The gan_model version of %s.""" % loss_fn.__name__ 162 new_loss_fn.__name__ = loss_fn.__name__ 163 new_loss_fn.__module__ = loss_fn.__module__ 285 def stargan_generator_loss_wrapper(loss_fn): argument 300 return loss_fn( [all …]
|
D | tuple_losses_test.py | 72 def loss_fn(x): function 74 new_loss_fn = tfgan_losses._args_to_gan_model(loss_fn) 84 loss_fn = tfgan_losses._args_to_gan_model(args_loss) 85 loss = loss_fn(tuple_type(arg1=-1, arg2=2), arg3=4) 99 loss_fn = tfgan_losses._args_to_gan_model(args_loss) 100 loss = loss_fn(InheritedType(arg1=-1, arg2=2), arg3=4) 237 loss_fn = tfgan_losses_impl.wasserstein_generator_loss 238 wrapped_loss_fn = tfgan_losses.stargan_generator_loss_wrapper(loss_fn) 240 loss_result_tensor = loss_fn( 252 loss_fn = tfgan_losses_impl.wasserstein_discriminator_loss [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | target_column.py | 55 loss_fn=_mean_squared_loss, 90 loss_fn = _log_loss_with_two_classes 92 loss_fn = _softmax_cross_entropy_loss 94 loss_fn=loss_fn, 151 def __init__(self, loss_fn, num_label_columns, label_name, weight_column_name, argument 153 if not loss_fn: 158 self._loss_fn = loss_fn 266 def __init__(self, loss_fn, label_name, weight_column_name, label_dimension): argument 268 loss_fn=loss_fn, 294 def __init__(self, loss_fn, n_classes, label_name, weight_column_name): argument [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head.py | 226 loss_fn=_mean_squared_loss, 263 loss_fn=_poisson_loss, 277 loss_fn=None, argument 322 if loss_fn: 323 _verify_loss_fn_args(loss_fn) 325 loss_fn = _wrap_custom_loss_fn(loss_fn) if loss_fn else None 337 loss_fn=loss_fn) 347 loss_fn=loss_fn, 395 loss_fn=None): argument 434 if loss_fn: [all …]
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | single_loss_example.py | 41 def loss_fn(ctx, x): function 47 dataset_fn, loss_fn, optimizer, distribution, iterations_per_step) 75 def loss_fn(): function 82 return optimizer.minimize(loss_fn) 84 return optimizer.minimize(loss_fn()) 112 def loss_fn(): function 123 return optimizer.minimize(loss_fn)
|
D | step_fn.py | 88 def __init__(self, dataset_fn, loss_fn, optimizer, distribution, argument 91 self._loss_fn = loss_fn
|
D | minimize_loss_test.py | 296 def loss_fn(): function 307 return optimizer.minimize(loss_fn) 309 return optimizer.minimize(loss_fn()) 388 def loss_fn(): function 392 train_op = optimizer.minimize(loss_fn) 393 loss = loss_fn()
|
D | keras_optimizer_v2_test.py | 65 def loss_fn(): function 69 train_op = optimizer.minimize(loss_fn, var_list=[var])
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_eager.py | 37 def _eager_loss_fn(outputs, targets, loss_fn, output_name): argument 39 loss = loss_fn(targets, outputs) 116 for i, loss_fn in enumerate(model.loss_functions): 136 if hasattr(loss_fn, 'reduction'): 137 current_loss_reduction = loss_fn.reduction 138 loss_fn.reduction = losses_utils.ReductionV2.NONE 139 weighted_losses = loss_fn(targets[i], outs[i], sample_weight=weights) 140 loss_fn.reduction = current_loss_reduction 150 output_loss = loss_fn(targets[i], outs[i], sample_weight=weights)
|
D | training.py | 1652 for i, (y_true, y_pred, loss_fn, sample_weight, mask, 1675 if hasattr(loss_fn, 'reduction'): 1676 current_loss_reduction = loss_fn.reduction 1677 loss_fn.reduction = losses_utils.ReductionV2.NONE 1678 weighted_losses = loss_fn( 1680 loss_fn.reduction = current_loss_reduction 1691 output_loss = loss_fn(y_true, y_pred, sample_weight=sample_weight) 1947 metrics_module.SumOverBatchSize() if hasattr(loss_fn, 'reduction') 1948 else metrics_module.SumOverBatchSizeMetricWrapper(loss_fn) 1949 for loss_fn in self.loss_functions [all …]
|
D | training_utils.py | 581 metric, output_shape=output_shapes[i], loss_fn=loss_fns[i]) 773 def get_metric_function(metric, output_shape=None, loss_fn=None): argument 789 isinstance(loss_fn, losses.SparseCategoricalCrossentropy) or 790 (isinstance(loss_fn, losses.LossFunctionWrapper) and 791 loss_fn.fn == losses.sparse_categorical_crossentropy)) 794 isinstance(loss_fn, losses.BinaryCrossentropy) or 795 (isinstance(loss_fn, losses.LossFunctionWrapper) and 796 loss_fn.fn == losses.binary_crossentropy)) 846 loss_fn = losses.get(loss) 847 return losses.LossFunctionWrapper(loss_fn, name=loss_fn.__name__)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | estimator.py | 107 def loss_fn(labels, logits, weights=None): function 115 loss_fn = None 120 loss_fn=loss_fn, 489 loss_fn=functools.partial( 531 def loss_fn(labels, logits): function 540 loss_fn=loss_fn, 557 def loss_fn(labels, logits): function 569 loss_fn=loss_fn,
|
D | custom_loss_head.py | 31 loss_fn, argument 57 weighted_loss, _ = loss_fn(labels, weight_tensor, logits) 62 loss_fn=loss_wrapper,
|
D | dnn_tree_combined_estimator.py | 275 loss_weight, loss_fn = dnn_to_tree_distillation_param 285 if loss_fn is None: 289 loss_fn = distillation_loss.create_dnn_to_tree_cross_entropy_loss_fn( 292 dnn_to_tree_distillation_loss = loss_weight * loss_fn(
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/l2hmc/ |
D | main.py | 74 loss_fn = tfe.function(l2hmc.compute_loss) 76 loss_fn = l2hmc.compute_loss 84 loss_fn=loss_fn, 153 loss_fn=l2hmc.compute_loss, argument 157 dynamics, x, loss_fn=loss_fn)
|
D | l2hmc_test.py | 42 dynamics, samples, loss_fn=l2hmc.compute_loss) 53 dynamics, samples, loss_fn=l2hmc.compute_loss)
|
/external/tensorflow/tensorflow/contrib/distribute/python/examples/ |
D | simple_estimator_example.py | 45 def loss_fn(): function 53 mode, loss=loss_fn(), eval_metric_ops={"Accuracy": acc_obj}) 58 train_op = optimizer.minimize(loss_fn(), global_step=global_step) 59 return tf.estimator.EstimatorSpec(mode, loss=loss_fn(), train_op=train_op)
|
/external/tensorflow/tensorflow/contrib/gan/python/estimator/python/ |
D | latent_gan_estimator_impl.py | 93 def _get_latent_gan_model_fn(generator_fn, discriminator_fn, loss_fn, argument 115 loss = loss_fn(gan_model, features, labels, add_summaries) 138 def get_latent_gan_estimator(generator_fn, discriminator_fn, loss_fn, argument 188 loss_fn, optimizer)
|
D | stargan_estimator_impl.py | 101 loss_fn=None, argument 151 if not callable(loss_fn): 180 return _get_estimator_spec(mode, gan_model, loss_fn, 209 loss_fn, argument 219 gan_loss = loss_fn(gan_model)
|
D | stargan_estimator_test.py | 178 loss_fn=dummy_loss_fn, 224 loss_fn=dummy_loss_fn,
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | estimator.py | 149 def loss_fn(labels, logits, weights=None): function 172 loss_fn=loss_fn,
|
/external/tensorflow/tensorflow/contrib/eager/python/ |
D | saver_test.py | 147 loss_fn = lambda: v[0, 0] ** 2 + v[0, 1] ** 2 function 148 optimizer.minimize(loss_fn) 152 optimizer.minimize(loss_fn) 157 optimizer.minimize(loss_fn)
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/experimental/ |
D | keras_test.py | 280 def loss_fn(y_true, y_pred): function 288 model.compile(opt, loss=loss_fn) 358 def loss_fn(y_true, y_pred): function 366 model.compile(opt, loss=loss_fn)
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_ptb/ |
D | rnn_ptb_graph_test.py | 46 loss = rnn_ptb.loss_fn(model, inputs_ph, labels_ph, training=True) 132 loss = rnn_ptb.loss_fn(model, inputs, labels, training=True)
|
D | rnn_ptb.py | 155 def loss_fn(model, inputs, targets, training): function 185 loss = loss_fn(model, inp, target, training=False) 198 return loss_fn(model, inputs, targets, training=True)
|